
1. Introduction
Anthropogenic disturbances of the terrestrial water cycle, climate change, and low frequency climate signals all 
challenge the stationarity assumption, which has been the backbone of water resources planning techniques during 
much of the 20th century (Loucks & Van Beek, 2017b). Time series of hydrological observations can exhibit 
nonstationarity in different forms such as increasing or decreasing trends (Bayazit, 2015; Olsen et al., 1999), 
shifts in the mean (Fortin et al., 2004; Potter, 1991), and shifts in variance (Coulibaly & Burn, 2004; Whitcher 
et al., 2002).

Detecting and attributing the source of nonstationarity in hydrological records is essential for the efficient 
management of water resources systems. This paper focuses on nonstationarity due to climate variability, which 
must not be confused with climate change. Climate variability is random variation from a long-run average 
distribution, whereas climate change is a trend or a shift in the long-run distribution (Stedinger & Griffis, 2011). 
More specifically, we investigate the value of water allocation policies that explicitly capture climate variability 
through shifting flow regimes. Climate variability is often linked to low frequency climate signals such as El 
Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillations, and North Atlantic Oscillation, which impact 
the hydrology in many regions worldwide (Akintug & Rasmussen, 2005; Bracken et al., 2014; Jha et al., 2021).

Observations of long-term fluctuations in time series of hydrological variables such as annual flows have trig-
gered the development of methods to quantify this long-term persistence. Among such investigations, the work of 
Hurst (1951) stands out. While analyzing the time series of river discharges in the Nile River basin, Hurst found 
that there is a tendency of wet years to cluster into multi-year wet periods or of dry years to cluster into multi-year 
drought periods (Koutsoyiannis, 2002). In the late 60th, Baum and his colleagues presented the basic concept 
of a regime-shifting time series model named Hidden Markov Model (HMM) (Rabiner,  1989). HMMs, also 
known as Markov mixture models or Markov switching models, is a class of probabilistic models for “labeling” 
the observations. Rather than focusing on shifts in the mean of a process, HMMs estimate shifts in the state of a 
process (Whiting et al., 2004). HMMs, which allow the probability distribution of each observation to depend on 
the unobserved (hidden) state of a Markov chain, can accommodate both overdispersion (when there is a greater 
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variability in the data set than would be expected based on a given statistical model) and serial dependence, 
which measures the correlation between two successive variables in time series (Loucks & Van Beek, 2017a). 
The motivation for adopting this type of model in hydrology lies in that the climate regime can be represented by 
a state variable that can take only a limited number of values. Consequently, along with a time series of histor-
ical river discharges, a HMM considers another time series with discrete climate states. These properties make 
this method a suitable option for modeling the governing hydrology of a system where the climate is switching 
between different states, say dry, normal, and wet. HMMs have been applied, for example, to analyze time series 
of daily precipitation data (Zucchini & Guttorp, 1991) or streamflow observations (Akintug & Rasmussen, 2005; 
Tan et al., 2017; Turner & Galelli, 2016; Yu et al., 2018).

Capturing those low-frequency shifts is particularly important in water resources systems characterized by large 
storage capacity because of their ability to move water over extended periods of time means that they could 
potentially take advantage of climate information in order to hedge against prolonged dry or wet periods (You 
& Cai, 2008; Zhao et al., 2012). However, when it comes to modeling techniques to optimize reservoir opera-
tion, only a few solution approaches can address the complexities associated with the presence of: (a) multiple 
hydrologic information/processes, (b) multiple, often conflicting, operating objectives, (c) stochastic variables, 
(d) nonlinear relationships, and (e) trade-offs between immediate and future consequences associated with the 
operation of the system (Pina et al., 2017).

Dynamic Programming (DP) is a well-established optimization method to solve the reservoir operation problem 
(Labadie, 2004). To achieve this, DP decomposes the original problem into sub-problems that are solved recur-
sively. Stochastic DP (SDP) is an extension of DP that can accommodate stochastic state variables like reservoir 
inflows, snowpack, and flow forecasts (Stedinger et al., 1984). The incorporation of more hydrological informa-
tion into the state vector has the potential to enhance SDP-derived policies and thus improve system efficiency. 
However, due to the curse of dimensionality, that is, the exponential increase in computational effort and volume 
associated with adding extra dimensions to the state-space, the number of state variables is often limited to 
three to four. To handle the uncertainties associated with various hydrologic information, variants of SDP have 
been proposed such as Bayesian SDP Karamouz et al. (2003) or Sampling SDP (Kelman et al., 1990; Kim & 
Palmer, 1997; Liu et al., 2020; Mujumdar & Nirmala, 2007; Tang et al., 2010).

Although useful, those variants fall short of capturing the long-term persistence that characterizes time series of 
river discharges exhibiting a regime-like behavior. Recently, Turner and Galelli (2016) proposed a SDP formula-
tion that can handle long-term persistence through an additional state variable representing climate states. This 
new formulation, called SDP-Φ, uses a Hidden Markov Model (HMM) to partition the streamflow time series 
into a small number of discrete regime states such as dry, normal or wet. That study confirms that regime-like 
behavior is a major cause of suboptimal hedging decisions for reservoirs that are vulnerable to prolonged dry 
spells. While this SDP-Φ has been successfully implemented on single reservoir operation problems, it cannot be 
applied to larger systems due to the curse of dimensionality.

Our literature review reveals that only few solutions are available to handle both hydrologic and system complex-
ities. One of them is Direct Policy Search, a methodology that has the capability of handling multiple objectives 
and sources of uncertainties (Libisch-Lehner et al., 2019). However, as pointed out by Castelletti et al. (2013), 
those simulation-based optimization methods are computationally demanding when the number of objectives 
increases, and difficult to parametrize when the water resources system is large and the network complex. 
Another alternative solutions is Stochastic Dual Dynamic Programming (SDDP) (M. V. Pereira & Pinto, 1991) 
which belongs to the field of Approximate DP (Powell, 2007). The SDDP algorithm relies on an iterative proce-
dure (i.e., backward optimization and forward simulation) to constructs a locally-accurate approximation of the 
benefit-to-go function through sampling and Benders' decomposition (M. Pereira & Pinto, 1983). The basic prin-
ciple is to approximate the benefit-to-go function using a piecewise linear function which is progressively refined 
by iteratively adding new hyperplanes (cuts) until the approximation is found to be statistically acceptable. As 
we will see later in Section 2.5, these piecewise linear approximations are constructed from the primal and dual 
solutions of the one-stage optimization problems as the algorithm progresses backward.

Generally speaking, SDDP uses a multisite periodic autoregressive model (MPAR) to capture the hydrologic 
uncertainty. This model can represent serial and spatial correlations within a river basin and between different 
basins as well as seasonality. A number of recent researches have examined ways of improving the built-in 
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hydrological model. Lohmann et al. (2016) suggests a Spatial PAR model for SDDP that can take spatial infor-
mation (such as distance between hydro plant) into account. The idea is that inflows into “neighboring” plants 
are correlated and this correlation can be accounted for by using neighboring inflow series to explain the inflow 
at a given location. Pritchard (2015) introduces an inflow modeling approach that can overcome probabilistic 
sampling errors introduced when the fitted continuous inflow model is replaced by a discrete approximation 
obtained through sampling. Poorsepahy-Samian et al. (2016) use the Box-Cox transformation in the inflow mode-
ling of SDDP while meeting the convexity requirement of the algorithm. Raso et al. (2017) present a stochastic 
streamflow model with a multiplicative component and a nonuniform time step. Pina et al. (2017) propose an 
approach to incorporate exogenous hydrological variables (e.g., snow water equivalent, ENSO variables) into 
the SDDP algorithm through a MPARX model. In Treistman et al. (2020), ENSO variables are rather treated as 
additional state variables modeled by a Markov chain along with the PAR(p) model for the streamflows. More 
recently, Mbeutcha et al. (2021) incorporate a moving average component in the built-in hydrological model of 
SDDP.

However, none of the reported extensions of the SDDP algorithm can handle low-frequency signals. The main 
focus of this study is to extend the SDDP algorithm so as to determine reservoir operating policies that explicitly 
capture shifting flow regimes due to climate variability. To achieve this, the state-space vector now includes a 
climate variable whose transition is governed by a HMM and the cuts approximating the benefit-to-go functions 
are also classified according to their climate state. The proposed SDDP-HMM model is then implemented on the 
multipurpose, multireservoir system in the Senegal River basin in West Africa, a region characterized by shifting 
flow regimes (Faye et al., 2015).

This paper is organized as follows: Section 2 presents the methodology to efficiently capture historical stream-
flow regime changes through HMM followed by a description of the modified SDDP algorithm to solve the 
multireservoir operation problem. Section 3 then provides a description of the Senegal River Basin. Section 4 
discusses the results. Finally concluding remarks, limitations, and potential extensions are discussed in Section 5.

2. Material and Methods
2.1. Unfolding the Hidden Climate States

In numerous river basins around the world, hydrologic time series display characteristic responses to large scale 
climate patterns (Akintug & Rasmussen, 2005; Bracken et al., 2014). For example, let us consider the time series 
of annual streamflows at Bakel in the Senegal River basin (West Africa) from 1904 to 2011 (Figure 1). This time 
series displays a regime-like behavior with wet periods during [1904–1910], [1915–1937], and [1943–1970], and 
dry periods during [1910–1915], [1937–1943], and [1970–2011].

For multi-year reservoir operation planning, characterizing these lengthy departures from the mean are essential 
as they stress the system far more than single wet or dry years (Bracken et al., 2014). Capturing such a long-term 
persistence therefore can be achieved by considering the climate states associated with flow regimes, something 
that can be achieved using, for example, Hidden Markov Models (HMM) through labeling the observations 
(Rabiner, 1989). In other words, when dealing with a time series of river discharges, it means that there exists 
another time series with discrete climate states that can take only a limited number of values (i.e., dry/wet for 2 
states; dry/normal/wet for 3 states) (Figure 2). Denote {q1, q2,…,qT} the time series of monthly flows and let {Φ1, 
Φ2,…,ΦT} be the time series of climate states which can only take Φ possible climate states.

The state variable is unobserved and is accordingly referred to as a hidden variable. The key information that we 
need to extract from the analysis of time series of river discharges are the transition probabilities from one climate 
state to another in a single time step. The probabilities 𝐴𝐴 𝐴𝐴

𝑖𝑖𝑖𝑖𝑖

𝑡𝑡
 of moving from climate state i at time t − 1 to climate 

state j at the next time step (t):

� �,�
� = ��(Φ� = �|Φ�−1 = �) with � = 2,… , � and �, � = 1, 2,… ,Φ (1)

are the elements of the (Φ × Φ) transition probability matrix P between time t−1 and t.

The observed variable qt is assumed to have been drawn from a probability distribution whose parameters are 
conditional upon the distinct state at time t such that, when Φt is known, the distribution of qt only depends on 
the current state Φt (Figure 3). A HMM is described by (a) the parameters of the Gaussian distributions, that 
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is, the mean μ = (μ1, μ2, …, μΦ) and standard deviation σ = (σ1, σ2, …, σΦ) associated with Φ states, (b) the 
(Φ × Φ)  transition probability matrix P, and (c) the initial distribution of the Markov chain δ. Consequently, the 
set of parameters to be estimated is θ = {μ, σ, P, δ}.

Prior to fitting a HMM to the observed sequence (here the time series of monthly inflows), outliers and the 
seasonal component must be removed. Then, the likelihood of observing that sequence, as calculated under a 
Φ-state HMM, must be evaluated. In this study, we use the Expectation-Maximization (EM) algorithm, an iter-
ative method for finding the maximum-likelihood estimate of the parameters of an underlying distribution when 
some of the data are missing. In the context of HMM, the EM algorithm is known as the Baum-Welch algorithm 
(Welch, 2003) and the hidden climate states are treated as missing data (Bilmes, 1998; Zucchini et al., 2017). The 
EM algorithm consists of two main phases: an expectation phase called “E step,” followed by a maximization 
phase called “M step.” Given the current estimate of the HMM parameters θ, the following steps are repeated 
until acceptable convergence is achieved: The “E step” phase of the algorithm computes the expected value of 
unobserved data (i.e., hidden climate states) using the current estimate of the parameters and the observed data. 
The “M step” phase of the algorithm then provides a new estimate of the parameters by using the data from the 
“E step” phase as if they were actually measured data. These parameters are then used to calculate the distribution 

of unobserved data in the next “E step” phase of the algorithm. The resulting 
value of θ is then the stationary point of the likelihood of the observed data.

Next, we want to determine the sequence of hidden climate states {Φ1, 
Φ2, …, ΦT} that has most likely (under the fitted HMM) given rise to the 
sequence of observations (here the time series of monthly river discharges). 
In the literature, this is well-known as the decoding problem. In this study, 
we use the Viterbi algorithm (Viterbi, 1967) to unfold the sequence of hidden 
climate states (called the Viterbi path). This, in turn, enables us to breaking 
the observations into Φ distinct regimes and to calculating the probabilities of 
transitioning between inflow regime states. As we shall see in the following 

Figure 1. Annual streamflow at Bakel in SRB (1904–2011) (a) Mean annual streamflow, (b) Normalized streamflow (the 
dashed line represents the 3-year running mean).

Figure 2. Time series of river discharges and hidden climate states.
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sections, these transition probabilities can then be used in the SDDP algorithm to derive water allocation policies 
tailored to discrete climate states such a dry, normal, or wet.

2.2. The Multireservoir Operation Problem

The operation of a multireservoir system is a multistage decision-making problem. The problem is to determine 
a sequence of allocation decisions xt that maximize the expected net benefit from system operation over a given 
planning period while meeting operational and/or institutional constraints (Labadie, 2004).

� = �
��|��−1

[

�
∑

�=1

����(��, ��) + ��+1� (��+1, ��)

]

 (2)

where Z is the expected sum of one-stage net benefits from system operation, T is the planning horizon, xt is the 
vector of allocation (decision) variables, ν(.) is the terminal value function, αt is the discount factor at stage t, 
and 𝐴𝐴 𝖤𝖤[.] is the expectation operator. In general, the vector of the state variables St includes the volume of water 
in storage st as well as hydrologic state variables ht. The allocation decisions can be reservoir storages, turbined 
outflows, spillage losses, and water withdrawals for off-stream uses, bt(.) represents the aggregated net benefits 
at stage t, which includes here the net benefit from irrigated agriculture and hydropower generation (the two 
dominant uses). Note that other operating objectives (e.g., navigation, ecological flows) are handled using penalty 
coefficients: bt(.) is penalized when the desired objective is not met.

The most common constraints are:

1.  Water balance equations:

𝐬𝐬𝑡𝑡+1 − 𝐂𝐂𝑅𝑅 (𝐫𝐫𝑡𝑡 + 𝐥𝐥𝑡𝑡) − 𝐂𝐂𝐼𝐼 (𝐢𝐢𝑡𝑡) + 𝐞𝐞𝑡𝑡 (𝐬𝐬𝑡𝑡, 𝐬𝐬𝑡𝑡+1) = 𝐬𝐬𝑡𝑡 + 𝐪𝐪𝑡𝑡 (3)

 where st is the vector of storage at the beginning of the period t, rt is the vector of releases, lt is the vector of 
spills, it is the vector of water withdrawals, qt is inflow during time t, C R is the reservoir system connectivity 
matrix, 𝐴𝐴 𝐂𝐂𝑅𝑅

𝑛𝑛1 ,𝑛𝑛2
  = 1 (−1) when reservoir n1 receives (release) water from (to) reservoir n2, C I is the connectivity 

matrix for return flows, and et is the vector of evaporation losses.
2.  Lower and upper bounds on storage levels:

𝐬𝐬
𝑡𝑡+1

≤ 𝐬𝐬𝑡𝑡+1 ≤ 𝐬𝐬𝑡𝑡+1 (4)

 where 𝐴𝐴 𝐬𝐬
𝑡𝑡+1

 , and 𝐴𝐴 𝐬𝐬𝑡𝑡+1 are the lower and upper bound on storage level respectively.
3.  Limits on reservoir releases:

Figure 3. Structure of Hidden Markov Model with 3 hidden climate states Dry (D), Normal (N), and Wet (W).
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𝐫𝐫
𝑡𝑡
≤ 𝐫𝐫𝑡𝑡 ≤ 𝐫𝐫𝑡𝑡 (5)

 Maximum release 𝐴𝐴 𝐫𝐫𝑡𝑡 is introduced to account for the maximum carrying capacity downstream of the reservoir, 
depending on the capacity of the hydraulic structures (e.g., penstock or spillway). Minimum allowable release 

𝐴𝐴 𝐫𝐫
𝑡𝑡
 is given to maintain a desired downstream minimum flow for water quality, navigation, and etc.

4.  Water withdrawals can be limited by the pumping station or channel capacity:

𝐢𝐢
𝑡𝑡
≤ 𝐢𝐢𝑡𝑡 ≤ 𝐢𝐢𝑡𝑡 (6)

As indicated earlier, several features make the reservoir operation problem Equations  2–6 computation-
ally challenging to solve with optimization techniques: the presence of stochastic variables, multiple, often 
conflicting, objectives, and nonlinear functions such as the hydropower production function, evaporation, and 
other losses (Rani & Moreira, 2010). Karamouz et al. (2003) suggests a time decomposition approach to deal 
with the complexity of the reservoir optimization problem. A time decomposition approach breaks down the 
original problem into long, mid, and short-term planning periods, each having a specific model. Long-term 
planning models (e.g., monthly time step and over-year planning horizons) are run first and provide strategic 
and tactical policy information. This information (e.g., future marginal water value and storage levels) then 
constitutes the boundary conditions for the mid- and short-term optimization tools (e.g., weekly to daily time 
horizons), whose outputs finally feed real-time operation models. This study focuses on the long-term reser-
voir operation problem and seeks to identify steady-state, monthly, reservoir operating policies that explicitly 
capture regime shifts.

2.3. One-Stage SDDP Problem

SDDP solves the optimization problem Equations 2–6 by decomposing it into a sequence of one-stage problems 
that are solved recursively. Let Ft be the benefit-to-go function (BTF) from stage t to the end of the planning 
period T associated with decision xt, ht be the vector of hydrological state variables, the one-stage SDDP optimi-
zation problem (OSOP) is a linear program:

��(��, ��) = max
��

[{��(.) + ��+1��+1}] (7)

Subject to constraints Equations 3–6, as well as:

1.  Approximation of the hydropower production functions:

⎧

⎪

⎨

⎪

⎩

�̂� − �1��+1∕2 − �1�� ≤ �1 + �1��∕2
⋮

�̂� − ����+1∕2 − ���� ≤ �� + ����∕2

 
(8)

 where H is the number of planes approximating the true non-linear hydropower functions, ω, δ, and ψ are the 
parameters derived from the corresponding convex hulls (Goor et al., 2010).

2.  Benefit-to-go Ft+1 is now a scalar bounded from above by the following inequalities (cuts):

⎧

⎪

⎨

⎪

⎩

��+1 − �1
�+1��+1 ≤ �1

�+1�� + �1
�+1

⋮

��+1 − ��
�+1��+1 ≤ ��

�+1�� + ��
�+1

 
(9)

 where L is the number of cuts (hyperplanes), φt+1, γt+1, and βt+1 are 1 × n vectors of cut parameters calculated 
at stage t + 1 (Tilmant et al., 2008), and ht typically includes the natural inflows observed during the last p 
periods (qt−1, qt−2, …, qt−p).
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2.4. Incorporating the Hidden Climate States Into SDDP

A common approach to capture the inflow uncertainty in SDDP is through 
a built-in multi-site periodic autoregressive model MPAR. The parame-
ters of the MPAR model are estimated from historical flow records (Pina 
et al., 2017). Suppose the periodic process is modeled by an MPAR of order p 
- MPAR(p) - then at each site n, the incremental inflows can be derived from:

(

𝐪𝐪𝑡𝑡 − 𝝁𝝁𝐪𝐪𝑡𝑡

𝝈𝝈𝐪𝐪𝑡𝑡

)

=

𝑝𝑝
∑

𝑖𝑖=1

𝝓𝝓𝑡𝑡𝑡𝑖𝑖

(

𝐪𝐪𝑡𝑡−𝑖𝑖 − 𝝁𝝁𝐪𝐪𝑡𝑡−𝑖𝑖

𝝈𝝈𝐪𝐪𝑡𝑡−𝑖𝑖

)

+ 𝝐𝝐𝑡𝑡 (10)

where qt is the incremental flow at time t, 𝐴𝐴 𝝁𝝁𝐪𝐪𝑡𝑡
 is periodic mean of qt, 𝐴𝐴 𝝈𝝈𝐪𝐪𝑡𝑡 is 

standard deviation of qt, ϕt is autoregressive parameter of the periodic model, 
and ϵt is a time dependent-spatially correlated stochastic noise.

Incorporating the (hidden) climate state variables into the state space vector 
of SDDP offers the potential to improve the operating policies derived by 
SDDP since the long-term persistence will be captured. As mentioned earlier 
in Section 2.1, the historical flow record can be broken into Φ distinct classes 
by a fitted HMM, providing Φ classes of inflows for each month (e.g., a 

HMM with 3 states, say dry, normal, and wet, yields 3 classes of inflow for each month). Instead of having a 
single time series of historical observations, the HMM now provides another time series with discrete climate 
states. At stage t − 1, assume (a) that 𝐴𝐴 𝐪𝐪𝑜𝑜

𝑡𝑡−1,𝑖𝑖
 is sampled from ith climate state and (b) that, for notational simplicity, 

an autoregressive model of order one is adjusted:
(𝐪𝐪𝑡𝑡 − 𝝁𝝁𝐪𝐪𝑡𝑡𝑡𝑡𝑡

𝝈𝝈𝐪𝐪𝑡𝑡𝑡𝑡𝑡

)

= 𝝓𝝓𝑡𝑡

(

𝐪𝐪𝑜𝑜

𝑡𝑡−1𝑡𝑖𝑖
− 𝝁𝝁𝑞𝑞𝑡𝑡−1𝑡𝑖𝑖

𝝈𝝈𝑞𝑞𝑡𝑡−1𝑡𝑖𝑖

)

+ 𝝐𝝐𝑡𝑡 (11)

where 𝐴𝐴 𝝁𝝁𝑞𝑞𝑡𝑡𝑡𝑡𝑡
 , and 𝐴𝐴 𝝈𝝈𝑞𝑞𝑡𝑡𝑡𝑡𝑡 are respectively the vectors of periodic means and standard deviations of jth climate state 

(Figure 4). In the backward phase of SDDP, at the beginning of stage t, we can use the modified hydrological 
model to (a) generate the K inflow scenarios qt,j from the sampled previous flow qt−1,i and (b) analytically calcu-
late the cuts' parameters for stage t − 1 (see Appendix A). Note that the K inflow scenarios correspond to an 
ensemble forecast with K members and with a forecast horizon of only one period (here 1 month). These inflow 
scenarios are also called backward openings in SDDP (M. V. Pereira & Pinto, 1991). In the forward phase, we 
can either use the synthetically generated scenarios or historical records to simulate the system over the planning 
period. The proposed approach can therefore handle both the short-term and the long-term persistence, the former 
through autoregressive models, and the latter via the fitted HMM.

2.5. SDDP Algorithm With Hidden Climate States

When hidden climate states are included in the state-space vector of SDDP, the objective function of the corre-
sponding OSOP becomes:

��,� (��, ��−1,�) = max
��

[

∑

�
� �,�
� {��(.) + ��+1��+1,�}

]

 (12)

where 𝐴𝐴 𝐴𝐴
𝑖𝑖𝑖𝑖𝑖

𝑡𝑡
 are the transition probabilities.

Compared to the traditional SDDP formulation, the cuts are now categorized based on their climate state j:

𝐹𝐹𝑡𝑡+1,𝑗𝑗 − 𝝋𝝋𝑙𝑙

𝑡𝑡+1,𝑗𝑗
𝑠𝑠𝑡𝑡+1 ≤ 𝜸𝜸𝑙𝑙

𝑡𝑡+1,𝑗𝑗
𝑞𝑞𝑡𝑡,𝑗𝑗 + 𝜷𝜷 𝑙𝑙

𝑡𝑡+1,𝑗𝑗 (13)

where 𝐴𝐴 𝝋𝝋𝑙𝑙

𝑡𝑡+1,𝑗𝑗
 , 𝐴𝐴 𝜸𝜸𝑙𝑙

𝑡𝑡+1,𝑗𝑗
 , and 𝐴𝐴 𝜷𝜷 𝑙𝑙

𝑡𝑡+1,𝑗𝑗
 are 1 × n vectors of cuts' parameters when the system is in climate state j. These 

parameters are analytically derived from the primal and dual information that becomes available as the algorithm 
progresses backward (see Appendix A for more details on the mathematical procedure to derive the cuts' param-
eters). Note that the other constraints Equations 3–8 of the standard SDDP model remain the same.

Figure 4. Schematization of inflow modeling considering 3 climate states: 
dry (d), normal (n), and wet (w).
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Since the cuts Equation  13 only offer an approximation overestimating the true benefit-to-go and thus Z, a 
forward simulation of the system with those cuts will automatically provide a lower bound to Z. In each forward 
simulation phase, the system is simulated using a set of M hydrologic sequences, which can be historical or 
synthetically-generated using, for example, Equation 10 or Equation 11. At the end of the simulation phase, the 
average total return over the M hydrologic sequences is therefore a lower bound to Z, which must be compared to 
the upper bound calculated at the end of the backward optimization phase. When the difference between the upper 
bound falls within the confidence interval around the lower bound, the algorithm stops (Tilmant et al., 2008).

The pseudo-codes of the backward optimization and the forward simulation phases with hidden climate states 
are given next:

Algorithm 2: Forward Simulation

Algorithm 1: Backward Optimization
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Compared to the traditional SDDP formulation, the backward optimization phase comprises an additional loop 
on the hidden climate states (Φ) and the cuts are stored according to their climate state. In the forward simulation 
phase, at stage t, the benefit-to-go Ft+1 is then the weighted sum of Ft+1,j where the weights are the transition 
probabilities 𝐴𝐴 𝐴𝐴

𝑖𝑖𝑖𝑖𝑖

𝑡𝑡+1
 , that is, the probabilities of moving from, say, the climate state i at time t to the different climate 

states j at time t + 1 (j = 1, 2, …, Φ). Since this additional loop in the backward optimization phase automatically 
increases the computation time, it is one factor to be considered when selecting the number of discrete climate 
states alongside with the length and inherent variability of streamflow records.

The next section describes the case study that was used to illustrate the gain associated with SDDP-derived allo-
cation policies tailored to specific climates/regimes.

3. Case Study
The Senegal River has a flow regime characterized by multiyear dry, normal, and wet periods (Bader 
et al., 2014). The basin covers an area of about 337 000 km 2 in West Africa and is shared by four countries: 
Guinea, Mali, Mauritania, and Senegal (Figure 5). Three tributaries, the Bafing, Faleme, and Bakoye all have 
their source in the Fouta Djallon, a high plateau located mainly in the Guinean portion of the SRB. Together, 
these three tributaries contribute to about 90% of the water flowing in the Senegal River. The basin has three 
distinct stretches: the mountainous upper basin, the valley, and the delta, which is rich in biological diversity 
and wetlands.

In the 1940s, the first major attempt to control the Senegal River discharges were made in order to cultivate 
rice in the delta (United Nations Report, 2003). Today, irrigation is still the motor of development in the basin, 
particularly in the valley and in the delta. Fishing, is also an important activity in the basin, specially in the valley 
and the delta. More recently, Senegal River flows have been used to spin the turbines of two hydropower plants: 
Manantali, which is a 200-MW power station, and Félou, a 62-MW run-of-river power plant. Both supply energy 
to the West African Power Pool.

The climatic regime of the basin is defined by three seasons, a rainy season from June to September, a cold, dry 
off-season from October to February, and a hot, dry off-season during the rest of the year. The river flow regime 
depends, for the most part, on the rain that falls in the upper basin in Guinea (about 2000 mm/year). In the valley 
and the delta, however, the rainfall is rarely more than 500 mm/year. The year-to-year variability of the river 
discharges during the high flow season is significant and exposes water users to a high hydrological risk (Tilmant 
et al., 2020). As indicated above, the flow regime is also characterized by periods of low, normal, and high flows, 
which can persist for several years. The multiyear drought of the 80ies, for example, is well documented and has 
had devastating consequences on local communities whose livelihood depends on the flow and the banks of the 
river for fishing and/or subsistence agriculture (Bruckmann & Beltrando, 2016).

Figure 5. The Senegal river basin.
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The Senegal is one of the few transboundary river basins managed by a genuine active joint-management organi-
zation (OMVS, the Senegal River Basin Authority) with personnel coming from the four riparian countries (Kliot 
et al., 2001). OMVS’ mandates involve not only the planning but also the operation of water resources in the 
basin. In this study, the intermediate development of the SRB is considered (Figure 6). It involves 5 reservoirs, 
6 power plants, and about 200.000 irrigated hectares. In the next section, optimal allocation policies for that 
particular future development scenario will be determined and then simulated using historical streamflow data 
over the 1904–2011 period.

Table 1 lists the main characteristics of the system while agricultural water demands are presented in Table 2. The 
future configuration of the system has a total storage capacity of 22.3 km 3, which corresponds to a 88% increase 
compared to the current storage capacity. The power plants listed in Table 1, will add 626 MW (+310%) to the 
installed capacity of the current system. The reservoir inflow-to-storage ratios computed on the mean of the 
cumulative inflow are 2.09, 3.86, 1.65, and 2.47 for Koukoutamba, Boureya, Manantali, and Gourbassi, respec-

tively, indicating that the system has a seasonal carryover capacity.

The monthly incremental inflows at the different nodes of the network 
are based on naturalized flows extracted from Bader et  al.  (2014) for the 
1904–2011 period.

4. Results and Discussion
4.1. Climate Sequences and HMM Classifications

To unfold the hidden climate states attached to the inflow time series in the 
SRB, we first fit a HMM to the time series of monthly streamflow data meas-
ured at Bakel (Senegal River). Bakel marks the transition between the upper 
(humid) part of the river basin and the lower valley where the contribution of 
tributaries to the river discharges is much smaller; as mentioned earlier, about 
90% of the flows in the SRB goes through Bakel. Prior to fitting a HMM, 

Figure 6. Schematization of the SRB for an intermediate development scenario (Tilmant et al., 2020).

Name Node ID Storage (km 3) Installed capacity (MW)

Koukoutamba 2 3.60 294

Boureya 4 4.75 114

Manantali 6 11.30 200

Gouina 12 ROR a 140

Felou 13 ROR a 60

Gourbassi 16 2.10 18

Diama 23 0.58 –

 aROR: run of river power plant.

Table 1 
SRB System Characteristics (Intermediate Development)
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outliers and the seasonal component are removed (Shoelson, 2021). Then, 
model parameters are fitted using the EM algorithm. The optimum order 
of HMM (Φ) is not known a priori and must be selected based on objective 
criteria. Both the Akaike Information Criteria (AIC) (Akaike, 1974) and the 
Bayesian information Criteria (BIC) (Schwarz, 1978) can be used to deter-
mine the optimum order for a HMM. Note that a trade-off must be found 
between the model complexity (i.e., the number of HMM parameters to be 
estimated) and the number of climate state that can properly represent histor-
ical climate shifts. In this study the added value for both AIC and BIC when 
considering more than 3 climate states was constant, indicating that there is 
no added-value to more than three states. The analysis is therefore carried 
out with Φ = 3, representative of dry, normal, and wet climate regimes as 
illustrated in Figure 7.

Results show that the hidden climate state with the lowest mean, denoted by 
“dry,” dominates the period between 1971 and 1996, which corresponds to 
the extended drought of the late 20th century, which has been analyzed, for 
example, by Faye et al.  (2015) and Sagna et al.  (2021). The monthly river 
discharges are then classified based on the fitted HMM. Figure 8 compares 
the statistics of the climate states for each month. The red, black, and blue 
boxes are associated with dry, normal, and wet climates/regimes respectively. 
We can see that the climate states' statistics are distinct, which validate the 
choice of the underlying structure of the HMM (Figure 8).

Table 3 presents the transition probability matrix associated with the HMM. As we can see, the transition proba-
bilities are close to zero or one, suggesting again that the states are clearly distinct. The values close to one on the 
diagonal indicate that when the climate is in a particular state, it will likely remain in that state at the next time 
period (month). In other words, shifting from one climate state to another is far less likely. For the dry climate 
state, for example, there is more than 90% probability of remaining in that state and less than 1% probability of 
transitioning to a wet state.

4.2. Analysis of Simulation Results

To assess the gains associated with climate-derived allocation policies, three SDDP formulations, each having 
a specific hydrologic model, are implemented and their performances compared. The first formulation attempts 
at capturing the temporal persistence of the hydrologic processes through a MPAR(p) model (de Matos & 
Finardi, 2012; Jasson et al., 2017) whose order p varies in space (site) and time (month). This version is denoted 
SDDP-MPAR. The second formulation is the proposed extension in which the state-space vector now includes as 

Node ID Withdrawals (hm 3/y) Area (ha)

3 369 19926

7 30 1562

14 208 10948

17 17 862

18 140 7147

19 1174 59936

20 553 28219

21 1097 44402

22 1537 78498

24 75 3827

Total 5198 255327

Table 2 
Crop Water Demands (Intermediate Development Scenario)

Figure 7. Persistent structure of the underlying regime process at Bakel in SRB considering three possible climate states (i.e., dry, normal, and wet).
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hydrologic variables the previous flow qt−1 and the climate state Φt with the latter capturing the long term persis-
tence through three different states (dry, normal, and wet). This second version is denoted SDDP-HMM. The 
third formulation is actually a deterministic dual DP (DDDP) in which one assumes perfect foresight of future 
inflows, therefore overestimating the performance of the system. The comparison between SDDP-HMM and 
SDDP-MPAR will reveal the gains associated with allocation policies that explicitly capture the long-term persis-
tence and that are therefore tailored to shifting flow regimes. The comparison between SDDP-HMM and DDDP 
will indicate the extent of the losses associated with an imperfect knowledge of future hydrologic conditions. In 
other words, the difference in terms of performances between SDDP-HMM and DDDP is the opportunity cost 
associated with imperfect flow forecasts. Table 4 lists the main characteristics of the three dual DP formulations.

Both SDDP formulations (with and without climate states) are implemented with the following hydrologic 
configuration: the number of backward openings is set to forty (i.e., K = 40), and forward simulations are carried 
out on 40 historical sequences of 5 years (i.e., M = 40). This setup is in line with previous studies (e.g., Pina 
et al. (2017); Tilmant et al. (2009) and was found to be a good compromise between computation time and the 
accurate representation of the hydrologic uncertainty. Both SDDP built-in hydro models are calibrated using 
107 years of monthly historical record extracted from Bader et al. (2014) for the 1904–2011 period.

For both SDDP formulations, the planning period is 60 months. Since the boundary conditions imposed on the 
state variables influence the allocation decisions during the first (by initial storages) and last stages (by zero 
terminal value function) (Rougé & Tilmant, 2016), a buffer of 2 years is considered in this study. This assump-
tion is motivated by the physical characteristics of the system and the fairly detailed data set, which prevent the 
presence of multiple near-optimal solutions (Rougé & Tilmant, 2016). It means that  once the SDDP algorithm 
has converged, the cuts from January to December of the third year are kept and the others are discarded. The 

results are analyzed after reoptimizing the policies along the 107 years of 
historical river discharges. Reoptimizing the policies is similar to the proce-
dure proposed by Tejada-Guibert et  al.  (1993) with SDP except that the 
benefit-to-go function Ft+1 is now piecewise linear (Tilmant et  al.,  2020). 
The reoptimization procedure was implemented here because we wanted to 
see how the proposed extension would handle the multiyear drought of the 
80ies, which had catastrophic consequences on riverine communities and led 
to mass migration (Dia, 2007).

Figure 8. Classified monthly inflows at Bakel derived from Hidden Markov Model when Φ = 3.

Dry Normal Wet

Dry 0.921 0.067 0.012

Normal 0.078 0.858 0.064

Wet 0.010 0.110 0.880

Table 3 
Transition Probability Matrix 𝐴𝐴 𝐏𝐏

𝑖𝑖𝑖𝑖𝑖

𝑡𝑡
 From ith Climate State to the jth Derived 

From Fitted Hidden Markov Model at Bakel in SRB When Φ = 3
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Table 5 lists the average and standard deviation of annual hydropower gener-
ation for the three dual DP formulations. As we can see, with SDDP-MPAR, 
the mean annual hydropower generation is roughly 5.7% less than the deter-
ministic case. When the hidden climate states are included in the algorithm, 
this difference is reduced to 4%. In other words, incorporating the climate 
states can fill 30% (1.7/5.7 × 100) of the gap in terms of energy. The stand-
ard deviation reflects the variability of hydropower generation in the basin. 
For example, with optimum operating policies provided by SDDP-HMM, the 
variability of power production during dry, normal, and wet years is 2.3% less 
than the traditional SDDP-MPAR formulation. The impact of these decisions 
on the amount of water spilled is also presented in Table 5 where we can see 
with SDDP-HMM the average annual spillage is reduced by 3.7% compared 
to the traditional SDDP formulation.

The stationary probabilities associated with dry, normal, and wet years are 28%, 53%, and 19% respectively. 
These stationary probabilities can be used to analyze the differences between model formulations within the dry, 
normal, and wet periods. For example, Figure 9 traces out the cumulative distribution of total annual hydropower 
generation for the three dual DP formulations. As we can see, the DDDP clearly provides an upper bound on the 
performance in terms of energy. During dry years, with a non-exceedance probability between zero and 28%, 
considering the long-term persistence is beneficial because the results with SDDP-HMM are almost as good as 
DDDP. During normal years, however, this gain is less pronounced and the difference between the cumulative 
distribution associated with SDDP-MPAR and SDDP-HMM becomes marginal; both SDDP formulations (with 
and without climate states) generate similar policies meaning that from a decision-making point-of-view, the 
climate states become informationless during “normal” years. The added-value comes back again during wet 
years, which are associated with non-exceedance probabilities beyond 81%. These results clearly indicate that the 
incorporation of hidden climate states yields better policies during extreme hydrological conditions (dry and wet 
years) compared to the traditional SDDP formulation.

Taking the DDDP model as a benchmark, Table 6 lists, for both SDDP formulations, the mean annual reduction 
in energy output and the mean annual increase in spillage losses that one can expect during dry, normal, and wet 
years. During dry years, compared to the deterministic case, the energy output is reduced by 10.7% when allo-
cation policies only consider the short-term persistence. This difference reaches 6.51% when allocation policies 
are tailored to climate states. During normal years, as indicated above, SDDP-MPAR and SDDP-HMM propose 
similar allocation policies since the differences with respect to the deterministic case are roughly the same: 
4.41% versus 4.11%. Allocation policies derived from SDDP-MPAR and SDDP-HMM are again distinct during 
wet years where the difference, in terms of energy output, with respect to the deterministic case are now: 4.22% 
versus 1.82%.

The impact of hidden climate states on storage trajectories is analyzed in Figure 10 where we can see the time 
series of aggregated storages over the simulation period for the three dual DP formulations. At the onset of 
the multiyear drought centered around the 80ies, SDDP-MPAR is almost depleting the reservoirs too quickly. 
This can be explained by the fact that the autoregressive model is overestimating the inflows during dry years. 
However, when the hidden climate states are included in the algorithm, allocation policies better hedge against 
such adverse conditions, and storage levels are kept higher and closer to that of DDDP.

Formulation p Φ
Time series of 

inflow
Time series of 
climate states

SDDP-MPAR(p) Up to 6 – ✓ ×

SDDP-HMM(Φ) 1 3 ✓ ✓

DDDP – – ✓ ×

Table 4 
Characteristics of Two Different Built-In Hydro Model of Stochastic Dual 
Dynamic Programming

Energy SDDP-MPAR SDDP-HMM DDDP

Mean (GWh) 3493 3554 3704

Std (GWh) 920 898 881

Spillage SDDP-MPAR SDDP-HMM DDDP

Mean (hm 3) 10923 10512 8966

Std (hm 3) 12582 12077 9976

Table 5 
Average Annual Results in Terms of Hydropower Generation and Spillage: Mean and Standard Deviation
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4.3. Evaluating the Performance of the SDDP Built-In Hydro Models

As mentioned earlier in Section 2.4, the SDDP algorithm requires that, at stage t, K vectors of inflows qt be gener-
ated by the built-in hydrological model so that K OSOP can be solved to capture the stochasticity of the hydrologic 
conditions and to derive the expected values of the parameters of the cuts approximating the benefit-to-go func-
tion. In other words, for each node n, an ensemble of K streamflow forecasts is available at the beginning of each 
stage. Generally speaking, the better the forecasts, the better the approximation of the benefit-to-go function Ft 
since the cuts' parameters directly depend on the primal and dual information associated with the K OSOP solved 
at stage t, one for each forecast. See Appendix A for more details on the procedure to derive the cuts' parameters.

In hydrology, the overall quality of ensemble streamflow forecasts is assessed with the continuous ranked probabil-
ity score (CRPS) (Matheson & Winkler, 1976). This common verification metric measures the quadratic distance 
between the cumulative distribution of the forecasts and the cumulative distribution of the observations, with a value 

Figure 9. Cumulative distribution of total annual hydropower generation for three Stochastic Dual Dynamic Programming 
formulation in the SRB.
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Annual loss in terms of energy (%) Annual increase in spillage losses (%)

SDDP-MPAR(p) SDDP-HMM(3) SDDP-MPAR(p) SDDP-HMM

Dry years 10.77 6.51 35.73 8.35

Normal years 4.41 4.11 21.66 21.32

Wet years 4.22 1.82 22.34 13.89

Table 6 
Energy - Average Annual Differences With Respect to the Deterministic Dual Dynamic Programming Model
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of 0 indicating a perfect forecast. As the CRPS assesses the forecast for a single time step, the MCRPS is defined 
as the average CRPS over the entire planning period T (Thiboult et al., 2016). To allow for the comparison among 
different nodes, we normalized the MCRPS with the standard deviation of the observations (SDo) (Cassagnole 
et al., 2021). The normalized mean continuous ranked probability score is estimated using the following equation:

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐, 𝑜𝑜𝑡𝑡) =

(

1

𝑇𝑇

∑𝑇𝑇

𝑡𝑡=1
∫

∞

−∞

[

𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡
(𝑞𝑞𝑡𝑡) − 𝐼𝐼𝑜𝑜𝑡𝑡 (𝑞𝑞𝑡𝑡)

]2
𝑑𝑑𝑞𝑞

)

SD𝑜𝑜

 (14)

where ot is the observed inflow, 𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡
 is the cumulative probability distribution of the forecasts at time t, qt is the 

predicted inflow, and 𝐴𝐴 𝐴𝐴𝑜𝑜𝑡𝑡 is the Heaviside function defined as:

��� (��) =

{

0 �� < ��
1 �� ≥ ��

 
(15)

Table 7 essentially compares the overall quality of the forecasts of the incre-
mental flows generated by the two built-in hydrological models: MPAR or 
MPAR-HMM. The values highlighted in bold show the best model. We can 
see that HMM-based forecasts are more accurate than those derived from 
a model that only captures the short-term persistence (MPAR). The differ-
ence is larger for the nodes draining portions of the Fouta Djallon where 
precipitations are abundant but where the contrast between dry and wet years 
is also more pronounced. Further downstream, as the river runs north-west 
and the climate gets drier, the relative contribution of tributaries draining 
the northern part of the basin becomes not only less important but also less 
variable year-to-year. Consequently, forecasting the incremental flows at the 
two run-of-river power plants, Félou and Gouina, is achieved with a similar 
accuracy regardless of the model.

Figure 10. Aggregated reservoir trajectories for the three Stochastic Dual Dynamic Programming formulations (1904–2011).

Name Node ID MPAR MPAR-HMM

Koukoutamba 2 0.103 0.094

Boureya 4 0.103 0.097

Manantali 6 0.104 0.097

Gouina 12 0.108 0.107

Felou 13 0.108 0.109

Gourbassi 16 0.126 0.109

Table 7 
NMCRPS Scores for the Two Hydrological Models: Multisite Periodic 
Autoregressive Model (MPAR) and MPAR-HMM
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As mentioned above when analyzing both the time series of aggregated storages and the results for the energy 
sector, the difference between both SDDP formulations is more obvious during dry and wet years. Such a differ-
ence comes from the fact that the corresponding built-in hydrological models perform differently as soon as the 
hydrologic conditions are departing from normal. Figure 11 shows the cumulative distribution of the accumulated 
annual inflows at each power plant compared to the historical observations for both hydrological models: MPAR 
and MPAR-HMM. As we can see, none of the models is able to fully capture the variability of the observations. 
In other words, the spread of the annual streamflows is underestimated. However, as soon as the hidden climate 
states are incorporated, the situation improves and the cumulative distribution of annual streamflows derived 
from the MPAR-HMM model moves closer to the CDF of the observations, especially during dry and wet years.

Regarding the agricultural sector, the performances associated with the three dual DP formulations are identical: 
all irrigation schemes are supplied with a reliability above 95%. Even though the analyzed system corresponds to 
a future development scenario with almost three times as many irrigated hectares as today, the agricultural water 
demand is still lower than the available resources, especially when the five reservoirs are operational.

5. Conclusions
As low frequency signals are affecting the hydrology worldwide, several river basins are experiencing cycles of 
prolonged dry and wet periods. Properly capturing such a regime-like behavior is essential to enhance the perfor-
mance of our water resources systems. This is especially the case for the multireservoir systems with large storage 

Figure 11. Cumulative distribution of Annual inflows for each hydropower plant in the SRB.
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capacity because they can move water over extended periods of time. However, determining regime-tailored 
allocation policies for large-scale water resources systems is challenging as it often requires trading-off hydrolog-
ical  complexity for system complexity.

In this study, we address this trade-off by combining Hidden Markov Modeling with SDDP. The former can be 
used to capture the long-term persistence that characterizes the flow regime of many rivers, while the later can be 
used to determine optimal allocation policies in large multireservoir systems.

The proposed extension of SDDP, called SDDP-HMM, is tested and compared to two other dual DP formulations 
using a future development scenario of the Senegal River basin as an example. The analysis of simulation results 
shows: (a) Considering the hidden climate states is particularly relevant during hydrological extremes; reservoir 
operating policies provided by SDDP-HMM better hedge against adverse hydrologic conditions; (b) The hydro-
logic forecasts computed by a model that captures both the short-term and the long-term persistences are more 
accurate than those obtained by the traditional MPAR model found in many SDDP formulations.

Our results are consistent with previous studies such as Turner and Galelli (2016) and show that the incorpora-
tion of relevant hydrologic information can improve the performance of a water resources system. The CPU time 
required for SDDP-MPAR, and SDDP-HMM, was about 8 and 25 min, respectively, on MacBook Pro with the 
eight-core Apple M1 chip with 8 GB of RAM. Despite the fact that the new SDDP formulation is three times 
slower, the computational time remains fairly low, making it possible to embed SDDP-HMM in decision support 
systems.

The proposed approach to address the trade-off between system complexity and hydrological complexity relies 
on an extension of SDDP, an optimization algorithm which requires that the one-stage optimization problems 
be linear programs. This condition has several implications. The most important ones are: (a) that non-linear 
relationships must be made piecewise linear such as Equation 8 for the hydropower production function, (b) the 
built-in hydrological model Equation 10 must be linear. As shown by Rougé and Tilmant (2016), a side-effect 
associated with these approximations is that the algorithm is prone to the presence of multiple near-optimal solu-
tions when inputs data are limited and/or when the system has significant carryover storage capacity. When these 
two conditions are met, we recommend implementing the year-periodic reoptimization procedure proposed by 
Rougé and Tilmant (2016) instead of directly using the benefit-to-go functions extracted after the buffer period. 
It must also be stressed that the proposed optimization model assumes that the river basin is managed by a single 
entity, which is the case in the Senegal. In transboundary river basins where countries do not cooperate, the model 
could be implemented sequentially, starting with the upstream country and imposing the resulting outflow to the 
downstream country and so on (Jeuland & Whittington, 2014). In this study, we also assume that the climate 
state is the same for the whole basin. Extending the model to river basins with asynchronous climate states is 
straightforward: sub-basin specific climate states must be included in the state vector. Note that this will auto-
matically increase the computation time as all combinations of climate states must be investigated. It must also 
be stressed that the proposed optimization model assumes that the operator is able to assess the climate state  at 
the beginning of each month. This 1-month perfect foresight is considered here as a reasonable assumption since 
it can be adjusted (together with the corresponding allocation decisions) as time goes by and the operators know 
more about the actual climate state during that month. Moreover, even though the climate state is hidden, in some 
cases, it can be partially revealed through the use of other hydroclimatic information such as sea surface temper-
ature (SST) or soil moisture (Gelati et al., 2010). In the Senegal River basin, for example, there is a relationship 
between seasonal flows and SST in the Gulf of Guinea (Gu & Adler, 2004).

Appendix A: Estimating Cuts' Parameters in SDDP-HMM
A key step of the Stochastic Dual Dynamic Programming (SDDP) algorithm is the derivation of the cuts' param-
eters. In the SDDP version with hidden climate states, the lth cut approximating the benefit-to-go Ft,j when the 
climate is in state j has the following form:

𝐹𝐹𝑡𝑡𝑡𝑡𝑡 − 𝝋𝝋𝑙𝑙
𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡 ≤ 𝜸𝜸𝑙𝑙

𝑡𝑡𝑡𝑡𝑡𝑞𝑞𝑡𝑡−1𝑡𝑖𝑖 + 𝜷𝜷 𝑙𝑙
𝑡𝑡𝑡𝑡𝑡 (A1)
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where 𝐴𝐴 𝝋𝝋𝑙𝑙
𝑡𝑡𝑡𝑡𝑡

 , 𝐴𝐴 𝜸𝜸𝑙𝑙
𝑡𝑡𝑡𝑡𝑡

 , and 𝐴𝐴 𝜷𝜷 𝑙𝑙
𝑡𝑡𝑡𝑡𝑡 are cuts' parameters when system is in climate state j. These parameters can be analytically 

derived from the primal and dual information that becomes available as the algorithm progresses backward. The 
parameters of the cuts can be derived from the Karush-Kuhn-Tucker (KKT) conditions (Kemp & Kimura, 1978):

∇𝐹𝐹 (𝑥𝑥∗) −
∑

𝑖𝑖

𝜆𝜆∗
𝑖𝑖 𝑔𝑔𝑖𝑖 (𝑥𝑥

∗) = 0 (A2)

where λ is the dual information of the optimization problem, x denotes a primal variable, and gi represents the ith 
linear constraint. Rewriting KKT for our reservoir optimization problem yields:
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 (A3)

where λw is dual variable associated with the mass balance Equation 3, λc is dual variable associated with the 
cuts Equation 9, and λhp is dual variable associated with convex hull approximation of the hydropower production 
function Equation 8. Cut parameters can be calculated by taking the partial derivative with respect to the corre-
sponding state variable.

The vector of slopes 𝐴𝐴 𝝋𝝋
𝑙𝑙𝑙𝑙𝑙

𝑡𝑡𝑙𝑡𝑡
 with respect to the storage variable st is given by:

Figure A1. Illustration of the backwards openings and the aggregation of the cuts when the climate is switching between 3 
different states (e.g., dry (d), normal (n), and wet (w)).
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𝜑𝜑
𝑙𝑙𝑙𝑙𝑙

𝑡𝑡𝑙𝑡𝑡
=

𝜕𝜕𝜕𝜕
𝑙𝑙𝑙𝑘𝑙𝑙𝑙

𝑡𝑡𝑙𝑡𝑡
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= 𝜆𝜆
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𝝍𝝍𝑘∕2 (A4)

Since the one-stage SDDP optimization problem is evaluated for K inflows scenarios (branches, backward open-
ings) to capture the hydrologic uncertainty, the individually-calculated cut parameters must be aggregated so that 
the expected benefit-to-go is approximated (Figure A1). For the jth climate state, the vector of expected slopes 

𝐴𝐴 𝝋𝝋𝑙𝑙
𝑡𝑡𝑡𝑡𝑡

 is given by

𝝋𝝋𝑙𝑙
𝑡𝑡𝑡𝑡𝑡 =
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 (A5)

where K is the number of backward openings, that is, inflow branches generated by the built-in hydrologic model 
as the algorithm progresses backward.

Similarly, the vector of slopes 𝐴𝐴 𝜸𝜸
𝑙𝑙𝑙𝑙𝑙

𝑡𝑡𝑙𝑡𝑡
 can be obtained from the dual and primal information associated with mass 

balance equalities and cuts inequalities:
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Again, the aggregation is carried out by taking the expectation over the K artificially generated flows:

𝜸𝜸𝑙𝑙
𝑡𝑡𝑡𝑡𝑡 =

1

𝐾𝐾

𝐾𝐾
∑

𝑘𝑘=1

𝜸𝜸
𝑙𝑙𝑡𝑘𝑘

𝑡𝑡𝑡𝑡𝑡
 (A7)

Finally, the constant term of the cut can be calculated with:

𝜷𝜷 𝑙𝑙
𝑡𝑡𝑡𝑡𝑡 =

1

𝐾𝐾

𝐾𝐾
∑

𝑘𝑘=1

𝐹𝐹𝑘𝑘
𝑡𝑡𝑡𝑡𝑡 − 𝝋𝝋𝑙𝑙

𝑡𝑡𝑡𝑡𝑡𝑠𝑠
𝑜𝑜
𝑡𝑡 + 𝜸𝜸𝑙𝑙

𝑡𝑡𝑡𝑡𝑡𝑞𝑞
𝑜𝑜

𝑡𝑡−1𝑡𝑖𝑖
 (A8)

where 𝐴𝐴 𝐴𝐴𝑜𝑜
𝑡𝑡
 and 𝐴𝐴 𝐴𝐴𝑜𝑜

𝑡𝑡−1,𝑖𝑖
 are the sampled storages and inflows respectively.

Data Availability Statement
All the data used in this study are from the Senegal River Basin Authority (OMVS) and were collected during 
a project funded by UN-FAO (TCP/INT/3602). Because the model contains sensitive information on existing 
and planned hydropower plants that is protected by a nondisclosure agreement with UN-FAO, it cannot be made 
public. These data can be requested by contacting OMVS (www.omvs.org, T: +221 338598182, E: omvssphc@
omvs.org).
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