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1 Introduction 
This document synthetizes the main findings of Task T4.6 (Feedbacks to the global scale) 
which aim to identify gaps between global and local Water-Energy-Food-Ecosystem models 
identified when navigating the trade-off between targeting realism at the local scale and 
representing global socio-economic and climatic teleconnections. The report covers different 
types of feedback involving selected GONEXUS case studies and diverse spatial scales.   
Specifically, we discuss in detail four feedback:  

• the integration of reservoir operating rules in global hydrologic models (Chapter 2); 
• the estimation of hydropower capacity factors in energy models conditioned upon 

water availability (Chapter 3);  
• the impacts of political instability on power trade vulnerability (Chapter 4);  
• the refinement of continental multi-decadal energy planning to regional, hourly 

power dispatch dynamics (Chapter 5).  
Besides, in Chapter 6 we illustrate the discrepancies between an estimation of local water 
scarcity functions for the Jucar River Basin with respect to those used by CAPRI model at the 
continental scale. Finally, we point the reader to Deliverable D3.2 for the analysis of the 
uptake of European agricultural policies. 
In each chapter, we explored the different feedback identified and discuss their implications 
for the global/continental models used by policy makers in prioritizing mitigation and 
adaptation policies. 
As shown by the GoNEXUS interactions depicted in Figure 1, the findings of this deliverable 
combined with those of Task 3.3, will support the model toolbox in advancing WEFE models 
for supporting the generation of evidence in WP5. 
 
 

  
Figure 1: GoNEXUS interconnections. 
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2 Integrating reservoir operating rules in 
global hydrologic models 

Including reservoir regulation in large-scale hydrologic models is one of the main challenges 
in the field nowadays, in particular when addressing extreme events such as droughts (Wada 
et al., 2017) Although many alternatives exist to represent reservoir operating rules in large-
scale hydrologic models, including purpose-depending configurations (Van Beek et al., 2011), 
the representation of multi-reservoir operation is still a challenge. 
 
In this context, artificial intelligence approaches emerge as an efficient opportunity to 
address this challenge, given its adaptative formulation. This feedback describes the 
development of a mathematical representation of reservoir operating rules for multipurpose 
multi-reservoir systems. 
 

2.1 Methodology 
Among the available artificial intelligence (AI) methodologies available, fuzzy logic was 
chosen to develop reservoir operating rules. It has been applied to derive both historical (Bai 
and Tamjis, 1970; Macian-Sorribes and Pulido-Velazquez, 2017; Shrestha et al., 1996) and 
optimal (Kumar et al., 2013; Panigrahi and Mujumdar, 2000; Russell and Campbell, 1996) 
operating rules. Fuzzy logic maps input variables to outputs using sets of fuzzy logical rules 
expressed through IF-THEN statements (Mamdani, 1974): 
 

IF x is A and y is B, THEN output is C 
 
Compared to Boolean logic, fuzzy logic is supported by linguistic descriptors attached to 
fuzzy numbers, such as “low”, “moderate” or “high”. The previous rule can be re-written in a 
fuzzy logic format by changing A, B and C to those linguistic descriptors: 
 

IF x is LOW and y is HIGH, THEN output is MODERATE 
 
Furthermore, a fuzzy logical rule is not subject to the Boolean to be or not to be approach, in 
which a rule is either followed (logical value 1) or not followed (logical value 0). A fuzzy logic 
rule, on the contrary, could be either fully followed (logical value 1), partially followed (logical 
values between 0 and 1) or not followed (logical value 0). This feature is closer to real-world 
applications and turns fuzzy logic into a flexible approach (Ekel et al., 2010). Moreover, the 
link between fuzzy numbers and linguistic descriptors facilitates the uptake of expert 
knowledge in fuzzy rules. 
 
A fuzzy rule-based (FRB) system, also known as fuzzy inference system (FIS) or fuzzy logic 
system, is defined by a set of fuzzy rules, the fuzzy numbers that quantify their premises and 
consequences, and mathematical operators. In order to create and use a fuzzy rule-based 
system, several stages are needed. The following description of both processes is based on 
Macian-Sorribes et al (2020)  Macian-Sorribes and Pulido-Velazquez (2017). 
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2.1.1 Fuzzy rule-based system building 

Although the methodology is described in general terms, it contains some adaptations made 
by the literature in order to adapt it to the specific features of water resources management; 
and thus it may differ from fuzzy logic descriptions for other science fields. The process 
required to build a FRB system is shown in Figure 2. 

 
Figure 2. FRB system building stages (modified from Macian-Sorribes et al, 2020) 
  
2.1.1.1 Previous analysis 

The previous analysis is a common stage in any algorithmic application, consisting in 
collecting the required data and information to develop the FRB system in a proper way to 
achieve its goals. In the case of fuzzy logic, this stage also includes setting the blueprint of 
expert knowledge acquisition if any. 
 
2.1.1.2 Fuzzy inputs definition 

The choice of fuzzy inputs has three substages: variable choice, division of each input variable 
in classes and attaching a fuzzy number to each class. Defining the input variables depend on 
the goal of the FRB, the available information, the temporal scale at which the FRB system 
will work and the system features. In water resources management, typical input variables 
include initial storages or levels, inflows, downstream demands and the time of the year (e.g. 
season, month, week). 
 
Once variables are set, each one should be divided by classes typically attached to linguistic 
descriptors (e.g. one variable divided in three classes could be characterized by the linguistic 
descriptors “low”, “medium” and “high”). The number of classes is conditioned by the goal of 
the FRB system and the available information: a large number of classes implies an increase 
in the system’s ability to reproduce the desired behaviour but in turn it increases the training 
complexity. If a very large number of classes is found, linguistic descriptors might be skipped, 
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since the differences between them would be less evident. It might be taken into account that 
these linguistic descriptors are key in case of using expert knowledge. 
 
Once the number of classes per variable is decided, it is required to attach one fuzzy number 
to each class (and to the linguistic descriptor if used). The definition of fuzzy numbers can be 
done based on several criteria such as expert knowledge, equal spacing or based on the 
historical records available. 
 
2.1.1.3 Fuzzy rules creation 

Fuzzy rules are made by combining the fuzzy inputs previously created based on their classes. 
The most straightforward way is to directly combine each class with all the classes of the 
remaining input variables, and thus the total number of rules would be the product of the 
classes of all inputs (e.g. a FRB system with 2 inputs of 5 classes each would have 5·5 = 25 
rules; and one with 3 inputs of 5, 3 and 3 classes would have 5·3·3 = 45 rules). 
 
However, a most precise fuzzy rule set could be defined in situations in which physical limits 
apply (e.g. in case of a fuzzy logic system with coordinates and rainfall is inputs, a fuzzy rule 
depicting the combination between very high rainfall and coordinates of desertic areas would 
not ring any bell) or in case that expert knowledge labels some of them as infeasible or 
improbable. An example of fuzzy rules with one input with two classes and the other with 
three classes is shown in Table 1. 
 
Table 1. Example of fuzzy rules 

Fuzzy rule Input 1 Input 2 
1 LOW LOW 
2 LOW MEDIUM 
3 LOW HIGH 
4 HIGH LOW 
5 HIGH MEDIUM 
6 HIGH HIGH 

 
Besides the fuzzy rules, it is required to define the mathematical operator that will be used to 
determine in which degree each fuzzy rule will be followed, based on how its premises are 
followed. Typical operators are the logical operators (“AND”, minimum among degrees of 
fulfilment; “OR”, maximum among degrees of fulfilment), the product of all the degrees of 
fulfilment or the squared product of all of the them. The degree of fulfilment is the logical 
value that each input has compared to the fuzzy numbers used to characterize the inputs of 
each rule, ranging between 0 and 1. More details can be found in the next 2.1.2 section below. 
 
2.1.1.4 Output selection 

Similar to input definition, output selection implies choosing the output variables based on 
the goals pursued and the information available, as well as quantifying them. Typical outputs 
of FRB systems for water resource operation involve target releases (global or per demand) 
or target storages or levels.  
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In contrast to the previous stages, outputs can either be fuzzy or non-fuzzy numbers. Fuzzy 
outputs are used by a Mamdani FRB, while non-fuzzy ones are characteristic of a Sugeno FRB. 
In the latter, the outputs are the coefficients of a polynomial equation whose order defines 
the order of the Sugeno FRB (e.g. a Sugeno FRB system of order 1 would employ linear 
equations, meaning that each rule would have two output values per output variable: the 
independent term and the slope). In the following, non-fuzzy input configurations (and thus 
a Sugeno FRB) will be considered. Together with the definition of output variables, 
preliminary values need to be attached to them. In a Sugeno FRB, each fuzzy rule should be 
given one preliminary output set value, which might change during the training process. 
 
2.1.1.5 Training 

The training stage consists in adjusting the response of the FRB system to the desired 
behaviour, either historical observations, expert knowledge information or algorithm’s 
results that should be mimicked. One FRB system can be trained by modifying the outputs or 
jointly changing inputs and outputs. Although the latter option would theoretically achieve a 
better performance compared to the former, in makes more difficult the training process 
itself and, in case of inputs defined by expert knowledge, would imply the loss of this 
knowledge. On the other hand, training the FRB system modifying exclusively the outputs is 
easier and it is the option mostly used in the literature on fuzzy logic applied to reservoir 
management. 
 
2.1.1.6 Evaluation 

The evaluation is developed by measuring the performance of the FRB system using input 
data not employed for training. In case it is not adequate, the building process needs to be 
restarted. In case it is positive, the usage of the FRB system is enabled. 
 

2.1.2 Fuzzy rule-based system use (fuzzy inference) 

The use of a trained and evaluated FRB system is also known as fuzzy inference and consists 
in mapping inputs to outputs. It follows the stages depicted in Figure 3. 
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Figure 3. Fuzzy inference stages (modified from Macian-Sorribes et al, 2020). 
 
2.1.2.1 Previous operations 

This step is applicable in case that the input variables need some pre-processing before 
introducing them into the FRB system, such as change of spatial or temporal scale and 
change of units. 
 
2.1.2.2 Fuzzyfication 

The fuzzification calculates how the input values (which are non-fuzzy) match the fuzzy 
numbers attached to each input class and, if used, to the linguistic descriptors. This 
calculation is performed by comparing, for each input, its actual non-fuzzy value with all the 
fuzzy numbers used to characterize this variable, in order to determine the degree to which 
the input value corresponds to them (also known as membership degree or membership 
value). 
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Figure 4 shows an example of fuzzification, in which a value of 4.5 in a given fuzzy number 
would result into a membership value of 0.2 in the ”low” class, 0.8 in the “medium” class and 
0 in the rest of classes. 
 

 
Figure 4. Fuzzyfication. 
 
2.1.2.3 Rule inference 

The rule inference process uses the membership degrees obtained in the fuzzification stage 
for all the inputs to determine the degree of fulfilment of each fuzzy rule. It consists in 
applying the operator defined in the FRB building process to each fuzzy rule. For example, in 
case of using the product operator, the degree of fulfilment of a fuzzy rule such as “if input 1 
is LOW and input 2 is LOW” would be calculated by multiplying the membership degrees of 
the inputs corresponding to the “LOW” fuzzy number. 
 
2.1.2.4 Output composition 

This stage computes the output of the FRB system based on the outputs of all the fuzzy rules 
and their degrees of fulfilment. In case of a Sugeno FEB system, this process is performed by 
computing, for each output variable, the weighted average over all the fuzzy rules, in which 
the weights are the degrees of fulfilment of each rule. 
 
2.1.2.5 Final operations 

The final operations are required when refining the output values is necessary (e.g. adjusting 
releases to the physical constraints of the outlets or to avoid negative values in one or more 
reservoirs. 
 

2.1.3 Experimental setup 

The schematic of the FRB system used to represent the operating rules of the Jucar river 
system is shown in Figure 5. The FRB system was coded in the Python programming 
language. A Sugeno FRB system of order 1 was chosen. It has four inputs (the current storages 
in the Alarcon, Contreras and Tous reservoirs, which are the main Jucar river reservoirs and 
the ones introduced in PCR-GLOBWB2; plus the month of the year) and three outputs (the 
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releases from Alarcon, Contreras and Tous). The FRB system is defined to work at the daily 
scale, and thus the release is adjusted on a daily basis. In spite of this temporal scale, it has 
been considered that using the month of the year as input instead of the actual day or week 
is appropriate given that operation decisions tend to be stable over the same month. The use 
of inflows as input has been discarded given that, at the daily scale, the size of the reservoirs 
is two or even three orders of magnitude above the incoming streamflows, which implies that 
do not play a role in defining operating decisions. 
 

 
Figure 5. Schematic of the FRB system to reproduce the Jucar river operating rules. 

 
Concerning inputs, the month of the year was defined as a non-fuzzy input divided in classes, 
representing each one a month of the year. This accommodation of non-fuzzy inputs in an 
FRB system, in practical terms, means that the FRB system works separately for each month, 
and thus it is equivalent as 12 FRB systems defined each one for a particular month. This setup 
is efficient because it enables a more precise definition of inputs and facilitates the training 
of the FRB system since the rules corresponding to each month can be trained separately 
from the rest. The remaining inputs were characterized by using three classes (“LOW”, 
“MEDIUM” and “HIGH”) and attaching to each one a fuzzy number depending on the monthly 
minimum, median and maximum values (Figure 6). For each month, the fuzzy number 
representing a “LOW” storage ranges between an empty reservoir (0) and the median value 
of the data records for the given month, with a modal value (value in which the membership 
of the fuzzy number is equal to 1) defined as the minimum value recorded for the given 
month. The fuzzy number of “MEDIUM” ranges between the minimum and the maximum 
values for the given month, with a modal value equal to the median. The “HIGH” fuzzy 
number ranges between the mediant value per month and the capacity of the reservoir, with 
a modal value equal to the maximum record for the same month. This division guarantees 
that all rules will be triggered during the training period, and also provides a level of overlap 
between fuzzy numbers within the recommendations of the literature, in which overlapping 
of fuzzy numbers is desirable. The operator to define the degree of fulfilment of each rule has 
been defined as the product among all input variables. 
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Figure 6. Fuzzy input characterization of storages adopted. 
 
The available data records on storages, inflows and releases from the three reservoirs used 
to train and validate the FRB system ranges between October 2005 and September 2019. 
Instead of separating the training and the evaluation period depending on the year, it has 
been preferred to do it based on the days of the month. Consequently, the data records 
corresponding to the 1st, 8th, 15th and 22nd days of each month were used to train the FRB 
system, while the rest of the days were employed in the evaluation process. The preliminary 
values given to the independent terms for each rule were the average of the historical 
releases for the month that corresponds to the rule, while the null preliminary values were 
adopted for the slope terms. The training was performed using the Pyomo Python library and 
the IPOPT algorithm (Interior Point OPTimizer, https://www.coin-or.org/) 
 

2.2 Numerical Results 
Given that performing a training coupling the FRB system with PCR-GLOBWB2 would be 
infeasible due to the computational burden required, an offline training has been performed 
by using historical observations as input variables instead of PCR-GLOBWB2 results. This 
process is faster, but it implies that the results shown are an upper bound of the ones that 
would be achieved once implemented in PCR-GLOBWB2. Figure 7 and Table 2 summarize 
the performance achieved by the FRB system in reproducing the observed releases, including 
both training and evaluation data. 
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Figure 7. Performance of FRB system for Jucar river reservoir operation. 
 
 
In all cases the metrics achieved show a good performance level, with similar values of the 
Nash-Sutcliffe efficiency index (NSE) and similar Root Mean Squared Error in absolute terms, 

Alarcon 

Contreras 

Tous 
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although the normalized RMSE yields lower values for Tous because of its higher releases 
compared to Alarcon and Contreras. Furthermore, the plots show an adequate reproduction 
of the historical values, in particular for the Tous reservoir, which is quite relevant since it is 
the one placed downstream, so its releases directly condition the water availability in the 
lower Jucar, which concentrates the majority of the surface water uses. In Alarcon and 
Contreras the FRB system shows some periods in which it overestimates the required 
releases, followed in the case of Alarcon by a period in which the opposite happens. 
 
Table 2. Performance metrics of the FRB system for Jucar river reservoir operation. 

Reservoir NSE NRMSE 
Alarcon 0.80 0.50 

Contreras 0.84 0.54 
Tous 0.88 0.28 

 
In conclusion, the FRB system developed for the Jucar river system shows a good 
performance level with a relatively simple experimental setup (27 rules per month), 
reinforcing the potential of fuzzy logic to derive adequate operating rules for multi-reservoir 
systems with complex operation patterns such as the Jucar. 
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3 Advancing the estimation of hydropower 
capacity factors in energy models 

In state-of-the-art energy systems modelling, reservoir hydropower is represented as any 
other thermal power plant: energy production is constrained by the plant’s installed capacity 
and a capacity factor calibrated on the energy produced in previous years (Stevanato et al., 
2021). Yet, hydropower generation is largely dependent upon hydroclimatic variability, which 
may either curtail production during intense drought events that reduce water availability, 
leading to biased optimal power dispatch strategies (Carlino et al., 2021). 
In this chapter, we aim to advance the representation of hydropower generation in energy 
systems models by conditioning the capacity factors of this technology upon the water 
available at the power plant location as estimated by hydrological models. The proposed 
approach is demonstrated using the OSeMOSYS-TEMBA model of the African energy 
system (Pappis et al., 2019) estimating the capacity factors of the 633 hydropower plants 
included in the African Hydropower Atlas (Sterl et al., 2022). Our estimate of the capacity 
factors are based on the SWAT+ hydrological model that is used to simulate the water 
availability both under the historical time period (1980-2016) and under different future 
ISIMIP2b scenarios over the period 2020-2050 (Carlino et al., 2023). 
 

3.1 Methodology 
Hydropower plants are categorized into three main types: (i) run-of-river, (ii) reservoir, and 
(iii) cascade configurations. Each type has distinct operational characteristics and outflow 
profiles, which are subsequently converted to the corresponding capacity factors. This 
process is run for three different hydrologic conditions, namely normal, dry and wet 
conditions. Normal capacity factors are derived as the monthly median, while wet and dry 
are obtained by multiplying the monthly median profiles by the ratio of 5th and 95th 
percentile of annual generation to multi-annual average generation. 
 

3.1.1 Run-of-River Hydropower Plants 

 
For run-of-river plants, the outflow profile is equivalent to the inflow profile. Power 
generation is modeled as a linear function of this outflow, capped at the design discharge to 
reflect full capacity operation during multiple months, not just the wettest. Seasonal capacity 
factors are calculated as follows: 
 

〈𝐶𝐹!"#$%〉&
',#,) = 𝑚𝑖𝑛 )

〈𝑄(𝑡)〉&
',#,)

𝑄#*+,-'
, 10 

 
Where 〈𝐶𝐹!"#$%〉&

',#,)  is the capacity factor for month m in normal (n), very dry (d), or very 
wet (w) years, 〈𝑄(𝑡)〉&

',#,)  is the average turbined outflow in that month, and 𝑄#*+,-' is the 
design discharge. 
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If 𝑄#*+,-' is unknown, it is estimated using the multiannual mean river discharge 𝑄&*.' and 
an assumed multiannual average capacity factor 𝐶𝐹1111, typically 50%: 
 

〈𝐶𝐹!"#$%〉&
',#,) = 𝑚𝑖𝑛 )

〈𝑄(𝑡)〉&
',#,)

𝑄&*.'
× 𝐶𝐹1111, 10 

When neither 𝑄#*+,-' nor 𝑄&*.' are available, the design discharge is assumed to be 50% of 
the maximum monthly flow in a normal year: 
 

〈𝐶𝐹!"#$%〉&
',#,) = 𝑚𝑖𝑛 )

〈𝑞(𝑡)〉&
',#,)

0.5 × 𝑞&./,'
× 𝐶𝐹1111, 10 

Where q(t) is the flow time series before bias-correction, and qmax,n is the maximum monthly 
flow in a normal year. Calculations are performed separately for normal, dry, and wet years. 
 

3.1.2 Reservoir Hydropower Plants 

For reservoir-based plants, inflow is divided into storable and non-storable components 
based on the reservoir's filling time. The storable component, which equals the reservoir’s live 
storage volume (i.e., 70% of total reservoir volume), is distributed evenly across seasons. The 
non-storable component, which exceeds the live storage volume, is assumed to be directly 
turbined. For reservoirs with a filling time longer than one year, the non-storable component 
is considered equal to zero. Since the filling time can be different in dry, normal and wet 
conditions, a reservoir’s non-storable component varies depends on the hydrologic 
conditions and, for example, might be zero in dry years only.  
Total outflow is the sum of these two components. The capacity factor profiles are then 
derived from these outflow profiles as described in the previous section. 
 

3.1.3 Cascade Configurations 

Cascade configurations involve one or more run-of-river or small reservoir plants 
downstream of larger reservoir plants. The inflow profile for the first downstream plant 
equals the outflow profile of the upstream reservoir plant, and this pattern continues 
downstream. Outflow profiles are converted to capacity factors using the equations 
described before. The impact of new upstream reservoirs on existing downstream plants is 
also considered. 
Since cascade configurations can be time-dependent – i.e., a reservoir plant may be planned 
or under construction upstream of an existing run-of-river plant - cascade configurations are 
evaluated for specific years (2020, 2030) and hypothetical scenarios where all planned plants 
are operational.  
 

3.2 Numerical Results 
The capacity factors for all hydropower plants included in the African Hydropower Atlas (i.e., 
existing, committed, planned and candidate projects) are first computed over the historical 
time period (1980-2016). In the original implementation of the OsEMOSYS-TEMBA model, 
all hydropower plants have a nominal capacity factor equal to 0.5. Our estimates suggest 
water availability substantially limit hydropower generation: in normal conditions, the 
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average capacity factor of 64% of the modelled plants (405 out of 633) is lower than 0.5. The 
spatial distribution of these capacity factors (Figure 8) highlights diverse patterns with the 
Nile River Basin emerging as a region with high (dark green) capacity factors; conversely, the 
large majority of the hydropower plants in West Africa is characterized by low (dark purple) 
capacity factors. Many hydropower plants in Southern Africa also have relatively low (light 
purple) capacity factors. This spatial variability suggests hydropower can contribute 
differently across the five power pools, emphasizing the limitation of the current assumption 
of a homogeneous capacity factor equal to 0.5. 

 
Figure 8: Average capacity factors for the hydropower plants in the African Hydropower Atlas conditioned on the water 
availability simulated by SWAT+ in normal hydrologic conditions. The nominal capacity factor of these plants in the OsEMOSYS-
TEMBA model is 0.5. 
 
In addition to the heterogeneity of the average capacity factors in normal conditions 
illustrated in Figure 8, hydropower generation varies because of intra-annual and inter-
annual hydrologic variability. To investigate these aspects, Figure 9 compares the normal, 
dry and wet monthly capacity factors for the Kariba and Kafue Gorge hydropower plants in 
the Zambezi Watercourse. Results show how the large storage capacity of Kariba makes its 
hydropower plant insensitive to the intra-annual hydrologic variability, allowing a constant 
generation over the months of the year. Conversely, the smaller capacity of Kafue Gorge 
reservoir makes the generation more sensitive to monthly water availability, with the 
estimated capacity factor that is higher in the wet season (i.e., January-February-March) and 
lower in the rest of the year.  
Both power plants show a pronounced sensitivity to inter-annual variability, with large 
differences between the normal, dry and wet capacity factors. In wet conditions, Kariba 
increases from 0.18 to 0.7, while it drops to 0.01 in dry conditions. Similarly, Kafue Gorge in 
the wet season fluctuates from 0.52 in normal conditions to 1.0 or 0.09 in wet and dry 
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conditions, respectively. These findings showcase the strong limitations of assuming a 
constant capacity factors for modeling the hydropower generation in energy systems 
models. 
 

 
Figure 9: Monthly capacity factors for Kariba and Kafue Gorge power plants in the Zambezi Watercourse for different hydrologic 
conditions over the period 1980-2016. 
 
Finally, building on these results we investigated the potential variability of the capacity 
factors across different future scenarios, namely SSP1-RCP2.6, SSP4-RCP6.0 and SSP5-
RCP8.5. Specifically, we simulated the projected hydrological conditions over the time period 
2020-2050 using the SWAT+ model with inputs derived from bias-adjusted projections of four 
global climate models (GFDL-ESM2M, HadGEM2-ES, ISPL-CM5A-LR, and MIROC5) forced 
with the concentration described in the Representative Concentration Pathways (RCPs) 
associated to each of the SSP scenarios part of the ISIMIP2b project. Figure 10 provides an 
example of results using the Manantali power plant in the Senegal River Basin. Results 
suggest that inter-annual variability is more impacting than the three scenarios. The wet and 
dry capacity factors are very similar under the SSP1-RCP2.6 and SSP4-RCP6.0 scenarios, 
while being slightly reduced under the SSP5-RCP8.5 one. In normal conditions, the projected 
capacity factor under the SSP1-RCP2.6 scenario is instead slightly higher than under the 
other two scenarios. In particular, the monthly capacity factors under SSP1-RCP2.6 are 
always higher than 0.6, while they vary between 0.51 and 0.63 under the other two scenarios. 
Considering again the nominal and constant capacity factor equal to 0.5 implemented in 
OSeMOSYS-TEMBA, our findings suggest the need of linking them to projected water 
availability for properly representing the contribution of hydropower technology to the 
future energy transition. 
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Figure 10: Monthly capacity factor for the Manantali power plant in the Senegal River Basin under different SSP-RCP projections 
over the period 2020-2050 and for different hydrologic conditions. 
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4 Political Instability and its Influence on 
Power Trade Vulnerability in Africa 

In the context of global policies for climate change mitigation on the energy sector (IPCC, 
2023), the African continent represents a critical juncture, especially for the possible side 
effects of the energy transition at the local scale. Despite its traditional reliance on fossil fuels 
(IRENA, 2024), Africa's abundant renewable energy resources (IRENA, 2022) offer significant 
potential for bypassing carbon-intensive technologies and achieving a net-zero energy sector 
while promoting socio-economic development. Although Africa contributes only 3.8% of 
global GHG emissions (CDP, 2020), its growing population and increasing incomes are 
projected to drive up demand for modern energy by one-third between 2020 and 2030 (IEA, 
2022). However, meeting the United Nations Sustainable Development Goal (SDG) of 
universal access to modern energy by 2030 (SDG7) (UN, n.d.) remains a formidable challenge, 
as 600 million people in Sub-Saharan Africa still lack access to modern, reliable, and clean 
energy in 2022 (IEA, 2023). 

Despite the opportunities for an energy transition, Africa faces numerous context-specific 
challenges. High levels of corruption, political instability, and ineffective governmental 
institutions (Kaufmann, 2023), especially in Central African nations, deter foreign investment 
in the continent's renewable energy potential (Komendantova et al. 2012). Furthermore, 
political violence and armed conflicts (ACLED, n.d.) threaten national energy security, with 
power outages often increasing during times of conflict (Spyrou et al. 2019). Power 
infrastructure, such as transmission lines, is particularly vulnerable to destructive attacks 
(EIAD, n.d.) (Zerriffi et al., 2002) as evidenced during the Mozambican civil war in 1992 (ECA, 
2009) and recent vandal attacks in Kenya (Alushula, 2023), Nigeria (The Guardian Nigeria, 
2024), and Uganda (Otage, 2022). In addition to electricity supply, fuel supply is also at risk 
due to political disputes, such as the recent conflict between Uganda and Kenya that 
jeopardized Uganda's fuel imports (“Kenya Ends Oil Import Feud with Uganda,” 2024; 
Rukanga, 2023). 

Traditional large-scale energy system planning often overlooks energy security and 
governance issues, which are crucial in unstable political contexts (O Dioha et al. 2023). 
Policymakers typically focus on least-cost energy system models emphasizing techno-
economic factors, neglecting the environmental and socio-political implications of the 
energy transition. Although some models incorporate climatic objectives through emission 
constraints or multi-objective optimization (Zeng et al. 2011), few studies explicitly evaluate 
the socio-political implications of the energy transition (Trotter et al. 2018) (Freeman, 2021) 
(Korkovelos et al. 2020) or the disruptions caused by political instability (Patankar et al. 2019). 

Moreover, the uncertainty of future socio-economic and climatic conditions complicates 
large-scale energy systems planning, affecting predictions of future energy demand and 
renewable energy availability. Hydropower production, for example, is highly dependent on 
climatic conditions (Wasti et al. 2022). Scenario analysis, using Shared Socio-economic 
Pathways (SSPs) (Bauer et al. 2017) and Representative Concentration Pathways (RCPs) (Van 
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Vuuren et al. 2011), can address some of these uncertainties by planning energy system 
capacity expansions under various future scenarios. 

This study fits into the broader discussion on the side effects of global policies on local 
multisector dynamics by evaluating how continental energy transition strategies, designed 
with a least-cost approach, are impacted by local socio-political instability. The research 
focuses on continental Africa, examining cost-optimal power trade strategies under different 
socio-economic and hydro-climatic scenarios. By identifying which time frames, geographic 
areas, and scenario assumptions are associated with significant risk variations, this study 
aims to provide policymakers with insights into how global energy policies might influence 
local energy security, socio-political stability, and overall development. This approach 
highlights the need for more nuanced energy planning that integrates socio-political factors 
and addresses the potential unintended consequences of global policies at the local level. 
 
The energy systems modelling framework employed for this work is OSeMOSYS -TEMBA 
AHA (Carlino et al., 2023), an open-source optimization model for energy generation and 
supply in 48 African countries. It integrates the African Hydropower Atlas (Sterl et al., 2022) 
to include capacity factors for 633 (existing or planned) hydropower projects. We solved the 
model considering three socio-economic and climatic scenarios, obtained by coupling Shared 
Socio-economic Pathways (SSPs) (Bauer et al. 2017) (Riahi et al., 2017) and Representative 
Concentration Pathways (RCPs) (Van Vuuren et al. 2011). The model was solved by coupling 
each socio-economic and climatic scenario with the two hydrological regime scenarios. 
Therefore, this approach yielded six cost-optimal strategies for the African energy sector, 
spanning the period from 2015 to 2050.  
 
We then evaluated the vulnerability of the cost-optimal energy strategies through a measure 
of the power trade-related political risk (Trotter et al. 2018), quantifying the susceptibility of 
electricity exchanges to disruptions due to the instability of the countries involved. We 
performed the analysis both at the continental and at the national scale, considering 
countries’ governance indicators coherently projected with each SSP (Andrijevic et al., 2019). 
From the findings, we tracked the temporal evolution of continental political risk over the 
upcoming decades across the different scenarios. We pinpointed countries that could be 
potential hotspots of political risk and assessed the differentiated impacts of socio-economic 
and climatic scenarios as well as the occurrence of droughts. Finally, we stochastically 
quantified potential power deficits arising from deviations in cost-optimal international 
power trades caused by political instability. The analysis assumes that countries with 
unstable governments, corruption, and/or frequent armed conflicts may deviate from the 
optimal level of power trade at the continental power system level. This approach allowed us 
to identify temporal and spatial criticalities, as well as scenario assumptions that could 
significantly impact energy security. 
 

4.1 Methodology 
4.1.1 OSeMOSYS TEMBA AHA 
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The modelling framework employed for this work is OSeMOSYS-TEMBA AHA (Carlino et al., 
2023). It is based on OSeMOSYS –TEMBA (“OSeMOSYS - TEMBA,” n.d.), a regional version 
of the global model, OSeMOSYS Global (“OSeMOSYS,” n.d.) (Barnes et al., 2022), 
representing the electricity generation and supply system for 48 African countries. It is an 
open-source optimisation model that finds the least-cost energy generation, capacity 
expansion and transmission strategies, based on energy sources availability, to satisfy given 
trajectories of energy demand over time. To improve the level of detail used in its 
representation of hydropower plants, the model was integrated with the African Hydropower 
Atlas (AHA) (Sterl et al., 2022), a database collecting information on the capacity factors of 
633 existing and planned hydropower projects in Africa. 
 
4.1.1.1 Scenario definition 

Energy demand definition in OSeMOSYS-TEMBA AHA was based on scenarios from the 
Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b) (Frieler et al. 2017). These 
scenarios are commonly used to coherently consider future final energy demands, land-use 
changes, and climate impacts on the hydrological cycle. Within each ISIMIP2b scenario, the 
definition of the energy demand is based on a single Shared Socio-economic Pathway (SSP) 
(Riahi et al., 2017), describing future socio-economic and political environment. Within 
ISIMIP2b, each SSP also is associated to a Representative Concentration Pathway (RCP) (Van 
Vuuren et al. 2011), describing a radiative forcing trajectory that is associated with a specific 
mitigation effort. 
 
All SSP-RCP combinations, therefore, reflect specific levels of challenges to adaptation, 
challenges to mitigation and actual efforts for climate change mitigation at the global scale. 
The three scenarios considered for this study are: 

• SSP1-2.6 (“Sustainability” scenario): accounts for sustainable development and 
constrained carbon emissions, in a global effort to limit long-term global warming to 
2°C, 

• SSP4-6.0 (“Inequality” scenario): focuses on heterogeneous economic development 
among regions and is not associated with specific climate mitigation efforts,  

• SSP5-8.5 (“Fossil-fueled development” scenario): accounts for high fossil-fuelled 
economic growth and is therefore associated with high greenhouse gas emissions.  

The final energy demands in this study were obtained by combining energy demand 
projections available in OSeMOSYS-TEMBA with SSP-informed projections, considering that 
the earlier are more reliable in the short term while the latter are more relevant in the long 
term. 
4.1.1.2 African Hydropower Atlas 

In the African Hydropower Atlas (Sterl et al., 2022) historical capacity factors for existing 
hydropower projects are estimated monthly via the hydrological model SWAT+ (“SWAT+,” 
n.d.). Meteorological data cover the 1980-2016 time period. Capacity factor projections over 
the 2020-2050 time period are also available in AHA. They were obtained for the three 
ISIMIP2b scenarios using as input bias-adjusted projections from four global climate models, 
forced with the RCPs associated to each SSP. 
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Capacity factors in AHA also reflect different hydrological regime, as they are based on inflow 
profiles for each month under normal, very wet, and very dry conditions. Normal capacity 
factors are derived as monthly median, while very wet and very dry are obtained by 
multiplying the monthly median profiles by the ratio of 5th and 95th percentile of annual 
generation to multi-annual average generation. For the purpose of this study, normal and 
very dry scenarios were considered. Specifically, the latter serve to account for risk-aversion 
of policymakers to drought events. 
 

4.1.2 Continental power trade-related political risk 

The evaluation of the political risk associated with the cost-optimal energy strategies is based 
on the work by Trotter et al. (Trotter at al. 2018). The study provides a formulation of the 
preventable political risk at the network level, defined as the political risk that can be avoided 
by designing the energy network differently. In Trotter’s work, the risk is obtained as a linear 
combination of six factors, each describing a different driver of risk. However, a preliminary 
calculation of the different factors, conducted on the optimal strategies obtained from our 
model optimisation, showed that only three of them have a significant impact on the overall 
political risk (contributing to more than 90% of the total risk on average). Thus, for the 
calculation of the network-level political risk, our work focuses its attention only on three said 
factors, disregarding the non-relevant ones. 
 
The relevant factors in question characterise different dimensions of risk that arise when 
energy exchanges are carried out between unstable countries. The total amount of exported 
power in the network is weighted on the governance performance of countries that carry out 
such trades. Each of the three risk factors refers to a different dimension of countries’ 
governance: the efficacy of their political institutions, their degree of political instability and 
their level of interference of private political interests in policy decisions. The characterisation 
of countries’ governance performance is based on World Bank’s Worldwide Governance 
Indicators (WGI) (Kaufmann, 2023) and on the degree of autocracy obtained from the Polity 
IV scale (Marshall et al. 2015). The firsts were projected to 2050 according to the SSP 
assumptions behind every scenario.  
 
Variables 

• 𝑑	𝑖𝑛	𝐷: demand node - 48 electricity-demanding nodes in the network, 
• 𝑔	𝑖𝑛	𝐺: generation technology - 10 generation technologies (biomass, solar PV, wind, 

hydro, geothermal, coal, oil, gas, fuel oil, nuclear), 
• 𝑠	𝑖𝑛	𝑆: supply node - 48 electricity-supplying nodes in the network, 
• 𝑡	𝑖𝑛	𝑇: time period - 36 time periods corresponding to years from 2015 to 2050, 
• 𝑥+#-0: decision variable describing the amount of electricity produced at supply node 

s, by generation technology g, in year t, and sent to demand node d (in GWh). 

Network-level formulation 

This risk formulation is intended to obtain a yearly risk evaluation at the continental level, 
aggregated for all countries in the network. 
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𝑃𝑜𝑙𝑅𝑖𝑠𝑘0   =  𝑤123 ⋅ 𝑃𝑅3𝐼𝑛𝑠𝑡𝐸𝑓𝑓𝑖𝑐0   +  𝑤124 ⋅ 𝑃𝑅4𝑃𝑜𝑙𝐼𝑛𝑠𝑡0  	

+ 𝑤125 ⋅ 𝑃𝑅5𝑃𝑜𝑙𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡0   
 

∀𝑡	 ∈ 𝑇 
 
Where: 

S𝑤12!

5

,63

= 1 

PR3InstEfficSup - Efficacy of political institutions 

Political risk associated with a network relying on electricity exports produced in countries 
with poor political institutions. Its theoretical value is equal to 100 if all the demand in the 
network is generated in countries with lowest possible institutional capacities and full 
autocracies. It approaches 0 if all exported electricity is generated in countries with extremely 
strong institutions, or if no electricity is exported. 

𝑃𝑅3𝐼𝑛𝑠𝑡𝐸𝑓𝑓𝑖𝑐𝑆𝑢𝑝+0 = V	
𝐼𝑛𝑠𝑡𝐼𝑛𝑒𝑓𝑓𝑒𝑐𝑡+ + 𝐴𝑢𝑡𝑜𝑐𝑟𝑎𝑐𝑦+

2 	[ ⋅SS𝑥+#-0
-∈8+9#

	

∀𝑠	 ∈ 𝑆, 𝑡	 ∈ 𝑇	

	

𝑃𝑅3𝐼𝑛𝑠𝑡𝐸𝑓𝑓𝑖𝑐0 =
∑ 𝑃𝑅3𝐼𝑛𝑠𝑡𝐸𝑓𝑓𝑖𝑐𝑆𝑢𝑝+0+∈:

∑ 𝑑𝑒𝑚𝑎𝑛𝑑#0#∈;
	

∀𝑡	 ∈ 𝑇	

	
𝑃𝑅3𝐼𝑛𝑠𝑡𝐸𝑓𝑓𝑖𝑐𝑆𝑢𝑝+0 ∈ 𝑅<=, 𝑃𝑅3𝐼𝑛𝑠𝑡𝐸𝑓𝑓𝑖𝑐0 ∈ 𝑅<=  ∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇	

	
𝐼𝑛𝑠𝑡𝐼𝑛𝑒𝑓𝑓𝑒𝑐𝑡+: Degree of institutional ineffectiveness in country s on a 0 – 100 scale, 
transformed from WGI Government Effectiveness index (Kaufmann, 2023). 

𝐴𝑢𝑡𝑜𝑐𝑟𝑎𝑐𝑦+: Degree of autocracy in country s on a 0 – 100 scale, transformed from the Polity 
IV scale (Marshall and Jaggers, 2015) (from -10, full autocracy, to 10, full democracy). 

Both 𝐼𝑛𝑠𝑡𝐼𝑛𝑒𝑓𝑓𝑒𝑐𝑡+ and 𝐴𝑢𝑡𝑜𝑐𝑟𝑎𝑐𝑦+ have been calculated as 10-year averages between 
2005 and 2014. 

PR4PolInst - Political instability  

Political risk of a network relying on politically unstable countries for electricity exports. 

1)	

2)	

3)	

4)	

5)	
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𝑃𝑅4𝑃𝑜𝑙𝐼𝑛𝑠𝑡𝑆𝑢𝑝+0 = 𝑃𝑜𝑙𝐼𝑛𝑠𝑡+ ⋅SS𝑥+#-0
-∈8+9#

	

∀𝑠	 ∈ 𝑆, 𝑡	 ∈ 𝑇	

	

𝑃𝑅4𝑃𝑜𝑙𝐼𝑛𝑠𝑡0 =
∑ 𝑃𝑅4𝑃𝑜𝑙𝐼𝑛𝑠𝑡𝑆𝑢𝑝+0+∈:

∑ 𝑑𝑒𝑚𝑎𝑛𝑑#0#∈;
	

∀𝑡	 ∈ 𝑇	

	
𝑃𝑅4𝑃𝑜𝑙𝐼𝑛𝑠𝑡𝑆𝑢𝑝+0 ∈ 𝑅<=, 𝑃𝑅4𝑃𝑜𝑙𝐼𝑛𝑠𝑡0 ∈ 𝑅<=  ∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇	

𝑃𝑜𝑙𝐼𝑛𝑠𝑡+: Degree of political instability in country s on a 0 – 100 scale, transformed from WGI 
Political Stability and Absence of Violence index (Kaufmann, 2023), calculated as average 
between 2005 and 2014. 

PR5PolInterest - Private political interests  

Political risk of a network relying on electricity exports from countries characterised by 
private political interference in policy decisions and implementation. 

𝑃𝑅5𝑃𝑜𝑙𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑆𝑢𝑝+0 = 𝐶𝑜𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛+ ⋅SS𝑥+#-0
-∈8+9#

	

∀𝑠	 ∈ 𝑆, 𝑡	 ∈ 𝑇	

	

𝑃𝑅5𝑃𝑜𝑙𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡0 =
∑ 𝑃𝑅5𝑃𝑜𝑙𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑆𝑢𝑝+0+∈:

∑ 𝑑𝑒𝑚𝑎𝑛𝑑#0#∈;
	

∀𝑡	 ∈ 𝑇	

	
𝑃𝑅5𝑃𝑜𝑙𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑆𝑢𝑝+0 ∈ 𝑅<=, 𝑃𝑅5𝑃𝑜𝑙𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡0 ∈ 𝑅<=  ∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 

 

𝐶𝑜𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛+: Degree of corruption in country s on a 0 – 100 scale, transformed from WGI 
Control of Corruption index (Kaufmann, 2023). 

4.1.2.1 Country-level power trade-related political risk 

To identify regional hotspots of political risk in Africa, we also defined a country-level 
formulation of political risk. Each of the relevant continental risk factors described above was 
declined into two country-level factors: one considering power imports and one considering 
power exports. The six defined factors were combined linearly, with equal weights, to obtain 
the total country-level political risk. 

7)	

8)	

9)	

10)	

11)	

6)	
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This risk formulation provides the yearly risk calculation for each country in the network. Each 
country is represented by both a supply and demand node, but based on the specific risk 
formulation, it may be considered as either one of the two or both. 

𝑐	𝑖𝑛	𝐶: country - 48 countries in the network, each associated to a supply and demand node. 

For the definition of all other variables refer to section 4.1.2. 

 
𝑃𝑜𝑙𝑅𝑖𝑠𝑘>0 = 𝑤123 ⋅ 𝑃𝑅3𝐼𝑛𝑠𝑡𝐸𝑓𝑓𝑖𝑐𝑆𝑢𝑝>0 +𝑤124 ⋅ 𝑃𝑅4𝑃𝑜𝑙𝐼𝑛𝑠𝑡𝑆𝑢𝑝>0  

+	𝑤125 ⋅ 𝑃𝑅5𝑃𝑜𝑙𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑆𝑢𝑝>0 +𝑤12? ⋅ 𝑃𝑅6𝐼𝑛𝑠𝑡𝐸𝑓𝑓𝑖𝑐𝐷𝑒𝑚>0  

+	𝑤12@ ⋅ 𝑃𝑅7𝑃𝑜𝑙𝐼𝑛𝑠𝑡𝐷𝑒𝑚>0 +𝑤12A ⋅ 𝑃𝑅8𝑃𝑜𝑙𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝐷𝑒𝑚>0	

	∀𝑐 ∈ 𝐶, 𝑡	 ∈ 𝑇		

Where: 

S𝑤12! = 1
A

,	6	3

	

	
PR3InstEfficSup - Efficacy of political institutions (exports) 

Political risk of a country relying on electricity exports towards countries with poor political 
institutions.  

Its theoretical value is equal to 100 if all the supply country's generation is exported towards 
countries with lowest possible institutional capacities and full autocracies. It approaches 0 if 
all the supply country's exports are towards countries with extremely strong institutions, or if 
no electricity is exported. 

𝑃𝑅3𝐼𝑛𝑠𝑡𝐸𝑓𝑓𝑖𝑐𝑆𝑢𝑝+0 =
∑ )V𝐼𝑛𝑠𝑡𝐼𝑛𝑒𝑓𝑓𝑒𝑐𝑡# + 𝐴𝑢𝑡𝑜𝑐𝑟𝑎𝑐𝑦#2 [ ⋅ ∑ 𝑥+#-0-∈8 0#9+

∑ ∑ 𝑥+#-0-∈8+6#
	

	

𝑃𝑅3𝐼𝑛𝑠𝑡𝐸𝑓𝑓𝑖𝑐𝑆𝑢𝑝>0 = 𝑃𝑅3𝐼𝑛𝑠𝑡𝐸𝑓𝑓𝑖𝑐𝑆𝑢𝑝+0	

∀𝑡	 ∈ 𝑇	

	
𝑃𝑅3𝐼𝑛𝑠𝑡𝐸𝑓𝑓𝑖𝑐𝑆𝑢𝑝+0 ∈ 𝑅<=, 𝑃𝑅3𝐼𝑛𝑠𝑡𝐸𝑓𝑓𝑖𝑐𝑆𝑢𝑝>0 ∈ 𝑅<=  ∀𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇	

	
PR4PolInstSup - Political instability (exports)  

12)	

13)	

14)	

15)	

16)	
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Political risk of a country relying on politically unstable countries for electricity exports. 

Its theoretical value is equal to 100 if all the supply country's generation is exported towards 
countries with highest possible political instability. It approaches 0 if all the supply country's 
exports are towards countries with extremely high political stability, or if no electricity is 
exported. 

PR4PolInstSupCD =
∑ kPolInstE ⋅ ∑ xCEFDF∈G mE9C

∑ ∑ xCEFDF∈GC6E
	

	
PR4PolInstSupHD = PR4PolInstSupCD	

∀t	 ∈ T	

	
PR4PolInstSupCD ∈ R<=, PR4PolInstSupHD ∈ R<=  ∀s ∈ S, c ∈ C, t ∈ T	

	
PR5PolInterestSup - Private political interests (export) 

Political risk of a supply country relying on electricity exports from countries characterised by 
private political interference in policy decisions and implementation. 

Its theoretical value is equal to 100 if all the supply country's generation is exported towards 
countries with highest possible corruption levels. It approaches 0 if all the supply country's 
exports are towards countries with low corruption, or if no electricity is exported. 

𝑃𝑅5𝑃𝑜𝑙𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑆𝑢𝑝+0 =
∑ k𝐶𝑜𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛# ⋅ ∑ 𝑥+#-0-∈8 m#9+

∑ ∑ 𝑥+#-0-∈8+6#
	

	
𝑃𝑅5𝑃𝑜𝑙𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑆𝑢𝑝>0 = 𝑃𝑅5𝑃𝑜𝑙𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑆𝑢𝑝+0	

∀𝑡	 ∈ 𝑇	

	
𝑃𝑅5𝑃𝑜𝑙𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑆𝑢𝑝+0 ∈ 𝑅<=, 𝑃𝑅5𝑃𝑜𝑙𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑆𝑢𝑝>0 ∈ 𝑅<=		

∀𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇	

PR6InstEfficDem - Efficacy of political institutions (imports) 

Political risk of a country relying on electricity imports towards countries with poor political 
institutions.  

Its theoretical value is equal to 100 if all the demand country's energy requirement is imported 
from countries with lowest possible institutional capacities and full autocracies. It approaches 
0 if all the demand country's imported electricity comes from countries with extremely strong 
institutions, or if no electricity is imported. 

17)	

18)	

19)	

20)	

21)	

22)	
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𝑃𝑅6𝐼𝑛𝑠𝑡𝐸𝑓𝑓𝑖𝑐𝐷𝑒𝑚#0 =
∑ )V𝐼𝑛𝑠𝑡𝐼𝑛𝑒𝑓𝑓𝑒𝑐𝑡+ + 𝐴𝑢𝑡𝑜𝑐𝑟𝑎𝑐𝑦+2 [ ⋅ ∑ 𝑥+#-0-∈8 0+9#

𝑑𝑒𝑚𝑎𝑛𝑑#0
 

	
𝑃𝑅6𝐼𝑛𝑠𝑡𝐸𝑓𝑓𝑖𝑐𝐷𝑒𝑚>0 = 𝑃𝑅6𝐼𝑛𝑠𝑡𝐸𝑓𝑓𝑖𝑐𝐷𝑒𝑚#0	 

∀𝑡	 ∈ 𝑇 

 
𝑃𝑅6𝐼𝑛𝑠𝑡𝐸𝑓𝑓𝑖𝑐𝐷𝑒𝑚#0 ∈ 𝑅<=, 𝑃𝑅6𝐼𝑛𝑠𝑡𝐸𝑓𝑓𝑖𝑐𝐷𝑒𝑚>0 ∈ 𝑅<=  ∀𝑑 ∈ 𝐷, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇 

 
PR7PolInstDem - Political instability (imports) 

Political risk of a country relying on politically unstable countries for electricity imports. 

Its theoretical value is equal to 100 if all the demand country's energy requirement is imported 
from countries with highest possible political instability. It approaches 0 if all the demand 
country's imported electricity comes from countries with extremely high political stability, or 
if no electricity is imported. 

𝑃𝑅7𝑃𝑜𝑙𝐼𝑛𝑠𝑡𝐷𝑒𝑚#0 =
∑ k𝑃𝑜𝑙𝐼𝑛𝑠𝑡+ ⋅ ∑ 𝑥+#-0-∈8 m+9#

𝑑𝑒𝑚𝑎𝑛𝑑#0
 

	
𝑃𝑅7𝑃𝑜𝑙𝐼𝑛𝑠𝑡𝐷𝑒𝑚>0 = 𝑃𝑅7𝑃𝑜𝑙𝐼𝑛𝑠𝑡𝐷𝑒𝑚#0  

∀𝑡	 ∈ 𝑇 

 
𝑃𝑅7𝑃𝑜𝑙𝐼𝑛𝑠𝑡𝐷𝑒𝑚#0 ∈ 𝑅<=, 𝑃𝑅7𝑃𝑜𝑙𝐼𝑛𝑠𝑡𝐷𝑒𝑚>0 ∈ 𝑅<=  ∀𝑑 ∈ 𝐷, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇 

 
PR8PolInterestDem - Private political interests (import) 

Political risk of a supply country relying on electricity imports from countries characterised by 
private political interference in policy decisions and implementation. 

Its theoretical value is equal to 100 if all the demand country's energy requirement is imported 
from countries with highest possible corruption levels. It approaches 0 if all the demand 
country's imported electricity is coming from countries with low corruption, or if no electricity 
is imported. 

𝑃𝑅8𝑃𝑜𝑙𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝐷𝑒𝑚#0 =
∑ k𝐶𝑜𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛+ ⋅ ∑ 𝑥+#-0-∈8 m+9#

𝑑𝑒𝑚𝑎𝑛𝑑#0
	

	
𝑃𝑅8𝑃𝑜𝑙𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝐷𝑒𝑚>0 = 𝑃𝑅5𝑃𝑜𝑙𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝐷𝑒𝑚#0	

24)	

25)	

26)	

27)	

28)	

29)	

30)	
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∀𝑡	 ∈ 𝑇	

	
𝑃𝑅8𝑃𝑜𝑙𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝐷𝑒𝑚#0 ∈ 𝑅<=, 𝑃𝑅8𝑃𝑜𝑙𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝐷𝑒𝑚>0 ∈ 𝑅<=  	

∀𝑑 ∈ 𝐷, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇	
 
4.1.2.2 Governance indicators projections 

The projection of governance indicators to 2050, in alignment with the SSP assumptions, was 
performed according to the methodology described by Andrijevic et al. (Andrijevic et al., 
2019). In that work, the aggregate governance indicator from the WGI database is predicted 
according to GDP per capita, share of population with higher education and gender gap in 
mean years of schooling. The model is calibrated using country-level governance data from 
1995 to 2015. Governance projections are obtained imposing coefficients estimated on 
historical data on projections of GDP, education and gender gap in education that are 
consistent with SSP projections. 
 

The aggregate WGI indicator incorporates six dimensions of governance. For our political risk 
formulation, only three of them are relevant: Government Effectiveness, Political Stability 
and Absence of Violence and Control of Corruption. Therefore, the approach used by 
Andrijevic et al. on the aggregate governance indicator was replicated only on such relevant 
factors. Historical time series of each indicator were used to calibrate the model and the 
estimated coefficients were imposed on the above-mentioned projected socio-economic 
variables.  
 
4.1.2.3 Power deficit calculation 

We assume that future national decision-makers would determine the amount of energy to 
be exchanged with neighbouring countries following a cost-minimization perspective. In that 
case, the amount of energy to be exchanged between two countries, in a given year and on a 
given transnational transmission line, is assumed to be equal to the optimal amount obtained 
from our least-cost energy systems model. In this framework, we suppose that countries 
characterised by unstable governmental institutions, corruption and/or frequent armed 
conflicts may deviate from the level of power trade exchange which is optimal at the level of 
the continental power system. Therefore, we reduce the amount of energy exchanged on 
each transmission line by a deviation factor that depends, in a stochastic way, on the degree 
of instability of the energy exporter. 
 
The methodology employed for this analysis stems from the work by Gold et al. (Gold et al., 
2019), analysing the impact of operational deviations on the robustness of regional water 
supply portfolios. Adapting such methodology to this case study, the procedure employed 
consists in the implementation of a tolerance analysis, which includes: 

1. the sampling of plausible stochastic operational deviations from the cost-optimal 
energy exchange strategies, 

2. the evaluation of the vulnerability of cost-optimal solutions via calculation of yearly 
energy demand deficits. 

31)	
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Problem formulation 

In this analysis, the cost-optimal amount of energy to be exchanged on a given transmission 
line in a given year, 𝜃,,0  , is perturbed through a multiplicative deviation factor, 𝛿>, depending 
on the degree of political instability (as defined for the political risk evaluation) of c, the 
exporting country on transmission line i. 

εI,D = θI,D ⋅ δH	

∀i	 ∈ I, t	 ∈ T	

𝜀,,0:	reduced amount of energy exchanged on transmission line i in year t. 
𝜃,,0: cost-optimal amount of energy exchanged on transmission line i in year t. 
𝛿>: deviation factor (0-1) associated to c, exporting country on transmission line i. 

The determination of the deviation factor is performed in a stochastic way. To define this 
methodology, we started by the characterisation of a simple deterministic rule, associating 
different ranges of countries’ political instability (calculated by averaging the dimensions of 
governance considered in the definition of political risk) to single, fixed values of operational 
deviation factors. The rule considered associates more unstable countries to more severe 
operational deviations, in a worst-case scenario perspective. This approach was then 
expanded by associating, to the same ranges of countries’ political instability, not a single 
deterministic operational deviation factor, but a range of values that the factor could take. 
More specifically, each political instability range was associated to an operational deviation 
ranging from a minimum value 𝛿>,&,' (equal to the single value considered in the 
deterministic approach) to a maximum value 𝛿>,&./  (equal to one for all ranges). For each 
country in the network, according to its level of instability, was associated a numeric 
operational deviation sampled from the associated range. 

Starting from this last approach, we obtained the definitive stochastic methodology by 
subjecting both the political instability ranges and the minimum deviation factors in sampling 
ranges, as previously defined, to a stochastic perturbation. The values of perturbation were 
sampled within a range that was defined through a sensitivity analysis, performed on the 
deterministic deficit in the Sustainability scenario. This sampling process was performed n = 
100,000 times. By further increasing the number of samplings, no significant variations were 
obtained. In each of the samplings performed, a different deviation rule was stochastically 
defined, and each country was associated to a random operational deviation within the range 
defined by its degree of political instability. Then, for each transmission line between two 
countries, the reduced amount of power traded was obtained, from which it was possible to 
calculate the reduced imports and exports for each country in the network. This allowed to 
calculate the energy deficit associated to each country c in each sampling, according to the 
following formulation: 

∆,&J%$0+,		> 	 = 𝑟𝑒𝑑𝑢𝑐𝑒𝑑	𝑖𝑚𝑝𝑜𝑟𝑡𝑠> − 𝑖𝑚𝑝𝑜𝑟𝑡𝑠> 	

	
∆*/J%$0+,		> 	 = 𝑟𝑒𝑑𝑢𝑐𝑒𝑑	𝑒𝑥𝑝𝑜𝑟𝑡𝑠> − 𝑒𝑥𝑝𝑜𝑟𝑡𝑠> 	

32)	

33)	
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∆> 	 = ∆,&J%$0+,		> − ∆*/J%$0+,		> 	

	
𝑑𝑒𝑓𝑖𝑐𝑖𝑡.K+,	> = ∆> 				𝑖𝑓		∆> 	 < 0	

	

𝑑𝑒𝑓𝑖𝑐𝑖𝑡> 	[%] = 	
𝑑𝑒𝑓𝑖𝑐𝑖𝑡.K+,	>
𝑑𝑒𝑚𝑎𝑛𝑑>

	

 
Lastly, the deficit obtained for each country was averaged over the n samplings. Further 
spatial and temporal aggregations were performed to analyse the obtained results. 
 

4.2 Numerical Results 
4.2.1 Increased energy demand causes surge in continental political risk in 

the first half of 2020-2030 

Results reported in Figure 11 indicate that political risk at the continental level peaks in the 
first half of the 2020-2030 decade for all scenarios, subsequently decreasing steadily until 
2050. In general, Sustainability scenarios display the highest levels of risk, followed by 
Inequality and Fossil-fueled development scenarios. Between 2045 and 2050 the risk in 
Inequality scenarios surpasses that in Sustainability scenarios. Near the peak, scenarios with 
very dry hydrology tend to show lower political risk compared to their analogous median 
hydrology scenarios. Moving towards 2050, this difference becomes less pronounced, and 
median hydrology scenarios often outperform very dry hydrology scenarios. 

35)	

36)	

37)	
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Figure 11: Continental political risk. Yearly values political risk for the entire African network under the six scenarios considered. 

The surge in continental political risk between 2020 and 2030 can be attributed to the 
projected increase in demand for modern energy in Africa, driven by population and income 
growth. This demand is expected to rise by one-third between 2020 and 2030 (IEA, 2022). 
Initially, the model cannot cost-effectively meet the increased energy demand through 
countries’ endogenous power generation, causing many countries in the network to rely 
heavily on energy exchanges during this initial phase. As the power system evolves, older 
power plants end their operational lifetime and new plants are constructed closer to demand 
centres. This reduces the role of transmission and, consequently, of power trade, which 
mitigates the risk associated with political instability.  
 
These findings indicate that policymakers should take an active role in supporting African 
nations during their energy transition, particularly during this critical initial phase marked by 
heightened risks. Policies aimed at decreasing energy dependence should be prioritized. By 
promoting the diversification of energy sources, investing in renewable energy 
infrastructure, and fostering local energy production capabilities, policymakers can help 
mitigate the vulnerabilities associated with heavy dependence on energy exchanges and 
enhance the continent’s resilience to political risks.  
 

4.2.2 Country-level political risk hotspots located in western, southern and 
central-eastern Africa 

Since the continental analysis indicated that the 2020-2030 decade is expected to be the 
most critical in terms of political risk, the quantification and analysis of country-level political 
risk focused primarily on this period. Specifically, Figure 12 displays the maximum levels of 
political risk registered for each country during 2020-2030 under different scenarios. The 
results indicate that political risk hotspots at the country level are primarily located in 



 

 

D4.3: Upscaling Feedbacks 35 

western, southern, and central-eastern Africa. Notably, four countries exhibit very critical 
levels of risk (>100) across all scenarios: Guinea-Bissau, Liberia, Rwanda, and Togo.  

 
Figure 12: Maximum political risk for each country in the network in 2020-2030. This decade was deemed most critical based on 
continental risk analysis. In alignment with this worst-case approach, maximum risk values are shown. 
 
These findings underscore the potential risks associated with already precarious energy 
security situations, particularly in Western Africa. For instance, Togo is characterized by 
significant power losses due to power thefts and aging infrastructure, while Liberia faces 
challenges related to unsafe petroleum product supply caused by political unrest, piracy, 
maritime boundary disputes, oil trafficking, and bunkering activities (Ofosu-Peasah et al. 
2021). It is also known that Togo’s energy supply is largely dependent on importation from 
neighbouring countries (Ajayi, 2013). These pre-existing conditions exacerbate the power 
trade-related political risk in these areas, which therefore need to be targets of interventions 
aimed at improving energy security and political stability.  
 
Understanding the root causes of political risk in critical areas is essential for developing 
effective strategies to mitigate these risks. Countries such as Liberia, Togo, and Rwanda, 
which are characterized by critically high levels of political risk (>100), also show very high 
fractions of exported power over total generation and/or very high fractions of imported 
electricity over total demand during the same timeframes. 
 
4.2.2.1 Country-Specific Scenario Adaptation Strategies and Political Risk 

Effects 
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Figure 13: Country-level political risk variations. Obtained by subtracting: a) risk of median hydrology scenarios from risk of very 
dry hydrology scenarios (assuming same SSP-RCP) b) risk of more sustainable scenarios from risk of less sustainable scenarios 
(assuming median hydrology). Risk values refer to the maximum levels of political risk for each country in the network in 2020-
2030 (displayed in fig. 6-2). 
 
Our analysis reveals that the same scenario assumptions can produce different effects on 
African countries in terms of political risk, as each nation adapts its energy system expansion 
strategies, to meet projected energy demand trajectories, according to its specific energy 
resource availability. To assess how scenario assumptions influence political risk, we 
conducted a variation analysis. Figure 13 shows absolute variations in the maximum country-
level political risk, during the 2020-2030 decade, between median and very dry hydrology 
scenarios. The results indicate that very dry hydrology scenarios are associated with 
increased political risk, particularly in southern Africa, compared to median hydrology 
scenarios.  
 
For instance, drought events and decreased hydropower productivity compel countries in the 
Zambesi area, such as Mozambique, to reduce their reliance on hydropower for self-
consumption. Consequently, they are forced to increase their reliance on imported 
electricity, leading to heightened political risk. For Namibia, the lost generation from 
hydropower is compensated through increased power production from solar and gas. 
Nevertheless, despite a general decline in energy exports, this fails to align with the reduced 
power generation. Consequently, the export-to-generation ratio escalates, leading to a 
greater dependence on electricity exports and thereby exacerbating political risk. As for 
Mozambique and Namibia, an energy mix heavily reliant on hydropower production can 
potentially heighten political risks during drought scenarios. However, this is not universally 
applicable, since not all nations with high proportions of hydropower in their energy 
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generation witness a significant decline in hydropower output during droughts (as, for 
instance, the Democratic Republic of Congo).  
 
Conversely, countries that experience significant decreases in hydropower generation during 
droughts may not necessarily face heightened political risks as a result of increased energy 
imports. This dynamic is observed in the Nile River basin. Egypt, for instance, effectively 
manages this risk by ramping up solar power generation, thus diminishing its reliance on 
imports and exports. Likewise, Sudan and Ethiopia attain comparable results by expanding 
their utilization of natural gas. Conversely, Rwanda can successfully mitigate risk by more 
than halving its electricity exports through increased production from geothermal and solar 
sources. Kenya, by enhancing its wind energy production, can achieve a similar risk reduction. 
Therefore, while the relationship between very dry hydrology scenarios and political risk is 
significant, it is not uniform across all nations. Diversified energy mixes represent effective 
strategies for mitigating political risk. Understanding these dynamics is crucial for 
policymakers navigating the complexities of energy security and political stability in the face 
of hydrological uncertainties.  
 
Similarly to the analysis of hydrological regime risk variation, we also examined the impact 
of socio-economic and climatic assumptions on political risk. Figure 13b illustrates the 
absolute variations in maximum country-level political risk, during the 2020-2030 decade, 
between more and less sustainable scenarios. Our findings reveal that Sustainability 
scenarios are associated with a slight increase in political risk, particularly noticeable in 
southern Africa compared to Inequality and Fossil-fueled development scenarios. However, 
in contrast to the comparison between the median and very dry hydrology scenarios, 
determining whether the variances in political risk stem from the socio-economic or the 
climatic assumptions within these scenarios is not feasible. It is more probable that the 
observed effects result from a blend of both sets of assumptions.  
 
For instance, Namibia, Zimbabwe and Botswana exhibit notably lower risks in the Inequality 
and Fossil-fueled development scenarios compared to the Sustainability scenario. The socio-
economic trajectories associated with the less sustainable scenarios are characterized by 
accelerated population growth, leading to heightened energy demands and subsequently 
increased power generation. However, in scenarios with less stringent climate regulations, 
these nations can meet the augmented energy requirements primarily through inexpensive 
fossil fuels (coal in Botswana’s and Zimbabwe’s case, and gas in Namibia’s). The additional 
generation also serves to curtail their reliance on foreign energy imports and exports, thereby 
mitigating their political risk.  
 
In this context, a notable anomaly arises with Togo, diverging from the continental trend by 
experiencing heightened political risk in less sustainable scenarios. The shift towards cheaper 
coal as an energy source in these scenarios prompts Togo to transition from minimal reliance 
on coal for energy production to sourcing over half of its energy mix from it. Conversely, gas, 
previously relevant in Togo’s energy portfolio, diminishes substantially or entirely in less 
sustainable scenarios. The increased energy generation demanded by the socio-economic 
assumptions underpinning these scenarios also leads to a significant surge in both energy 
imports and exports for Togo. Once again, Togo emerges as a regional electricity dispatch 
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intermediary, utilizing its additional coal-based energy generation primarily for export 
purposes, which increase the country’s exposure to trade-related political risk.  
 
It is therefore crucial to account for the unique economic attributes and available resources 
of individual countries when examining the effects of climate change mitigation policies. 
Indeed, these unique attributes may result in diverse socio-political outcomes from such 
policies. The impacts largely depend on a nation’s ability to adapt to changes in its 
economically viable energy supply mix. In the scenarios crafted for this study, the 
combination of SSPs and RCPs complicates the attribution of impacts on the individual 
assumption categories. Future research endeavours should concentrate on investigating the 
individual contribution of socio-economic and climatic assumptions on political risk 
variations. For instance, the well-established notion that climate policies can enhance energy 
security, leading to reduced dependence on energy imports (Clarke et al. 2022) (Cherp et al., 
2016) (Jewell et al. 2013), should correlate, in such scenarios, with a decrease in political risks 
associated with power trade. 
 

4.2.3 Poor governance performance is associated to more severe power 
deficits 

The evaluation of continental power deficits due to operational deviations, whose results are 
summarized in Table 3, highlights that, in alignment with political risk, 2020-2030 is the most 
critical decade for power deficits. This holds true considering both average deficits, which 
don’t exceed 1.3%, and maximum deficits, which don’t exceed 12%. Moreover, Inequality 
scenarios display higher levels of deficit with respect to Sustainability and Fossil-fueled 
development scenarios. In alignment with the scenario comparison conducted on political 
risk, it remains challenging to definitively attribute the deficit disparities to either the socio-
economic or the climatic assumptions behind our scenario definitions. Nevertheless, it is 
plausible to assert that the predominant driver of increased deficit in Inequality scenarios is 
the overall poorer governance status of African countries in those scenarios.  
 
Table 3: Average and maximum continental power deficits due to operational deviations. Countries displaying maximum risk 
values are reported (LR = Liberia, ZM = Zambia, EG = Egypt, RW = Rwanda, CM = Cameroon). 

 
 
 

2020-2030

2030-2040

2040-2050

TOT

2020-2030 LR 9.43% LR 11.82% LR 10.74% ZM 10.28% ZM 8.04% ZM 9.22%

2030-2040 ZM 1.47% ZM 1.70% RW 4.48% ZM 4.66% ZM 2.26% ZM 2.40%

2040-2050 EG 0.81% EG 0.78% CM 1.46% ZM 1.45% EG 0.42% EG 0.34%M
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Figure 14: Average country-level power deficits due to operational deviations in 2020-2030. This decade was deemed most 
critical based on continental power deficit evaluation (tab. 1). 
 
 
Figure 14, on the other hand, displays results from the country-level power deficit 
assessment. Results indicate that hotspots of deficit, during the most critical decade, would 
be mainly located in central and western Africa under all scenarios. Deficit hotspot locations 
show no evident regional overlap with political risk hotspots (Figure 13), except for some of 
the most critical countries, like Liberia and Rwanda. Specifically, Liberia, similarly to Togo, 
functions as a regional electricity dispatch intermediary, importing surplus power to be 
exported to its neighbouring countries. However, countries with whom Libera carries out 
energy exchanges (namely Côte d’Ivoire, Guinea, and Sierra Leone) face greater instability 
compared to Togo’s (involved with Benin, Ghana, Niger, and Nigeria). Consequently, Liberia 
is more vulnerable to potential energy deficits despite sharing comparable levels of political 
risk with Togo. In general, countries characterised by high potential deficits are associated 
with either a power supply mix heavily dependent on energy imports and/or exports, or a 
regional framework marked by considerable and widespread political instability. 	 	
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5 From multi-decadal energy planning to 
hourly power dispatch: evaluating the 
reliability of energy projections in the 
Southern African Power Pool 

In developing countries, and particularly in the African continent, the energy transition has 
emphasized the urgency of expanding affordable and clean energy sources (IEA, 2022). In this 
context, energy system planning models, which solve cost-optimal trajectories of capacity 
expansion for different technologies, are key tools to assist the economic development in the 
poor regions (Dalla Longa and Van Der Zwaan, 2021) and to transit to a net zero emission 
energy system(Ou et al., 2021). However, they generally miss out on short-term but high-
intensity events due to their limited spatio-temporal resolution. This limitation is evident in 
energy systems with non-dispatchable variable renewable energy resources (VRES), which 
rely on fluctuating external influences (Pfenninger et al., 2014). To address this challenge, an 
integration with power system models, which are used to balance electricity supply and 
demand with high temporal and spatial resolution, minimizing the cost of the grid, can offer 
a solution. Power systems are a component of energy systems, and they focus on a single 
energy carrier, i.e. they describe the process of generation and distribution of electricity. 
While energy system models identify technologies with the greatest impact on greenhouse 
gas emissions and the lowest technical financial risk, power system models address system 
reliability, as the share of VRES grows. The integration of energy system models with power 
system models is thus beneficial. 
 
In this work, we integrate a long-term energy planning model, OSeMOSYS- TEMBA (Pappis 
et al., 2019), and a power system simulation model, PowNet (Chowdhury et al., 2020).The 
integration is carried out through a technique that mimics the downscaling of climate 
models, in order to test the robustness of solutions provided by the energy system model. 
The energy system model will constrain the capacity expansion for the power system model, 
while the power system model will increase temporal resolution and improve the 
approximation of the transmission network. With this work, we aim to support the 
advancement of the power infrastructure of the Southern African Power Pool (SAPP) (SAPP, 
2021), which is one of the most interesting regions of the world for energy and power systems 
research. Indeed, driven by population growth, urbanization, and economic development, its 
energy systems will expand and change significantly to produce reliable and clean energy.  
 
We assess the differences in electrical operations within the energy and power system 
models and examine the power generation deficit and the transmission line overloads, in 
order to identify their causes and to suggest potential technical solutions.  
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Our contribute consists of developing a new methodology for supporting long- term energy 
planning that evaluates the robustness and reliability of interconnected power systems under 
increasing electricity demands and dominated by non-dispatchable VRES. By using a power 
system model forced with inputs from an energy system model, we achieve a more detailed 
resolution than the typical energy system model, enabling us to capture the availability 
patterns of the variable renewable power sources and unmet demand. 
 

5.1 Methodology 
5.1.1 PowNet 

PowNet is a least-cost optimization model for the simulation of the Unit Commitment (UC), 
i.e. when to start up or shut down power plants, and Economic Dispatch (ED), i.e. how much 
power should each plant generate. It is used for large- scale (regional to country) power 
systems modelling with an hourly time step. The power system is represented by a set of 
nodes that include power plants, high-voltage substations, and import/export stations (for 
cross-border systems) and they can transfer electricity between each other thanks to 
interconnections. The model looks for the least-cost scheduling and dispatch from all the 
power plants considered to meet hourly electricity demand in all the substations. Each node 
can have an associated power demand, dispatch- able power plants, renewable generators, 
and high-voltage substations. The model’s planning horizon covers 24 hours. The objective 
of PowNet is to meet the hourly electricity demand at each node while minimizing the costs 
associated with energy generation in a planning horizon of one day. It is implemented in 
Python and any standard optimization solver (e.g. Gurobi, CPLEX) can be used (Chowdhury 
et al., 2020). 
 

5.1.2 OSeMOSYS 

OSeMOSYS, i.e., Open Source Energy MOdelling SYstem, is a dynamic, bottom-up, multi-
layer freely available energy system optimization model for long-run energy planning, 
developed at KTH Royal Institute of Technology, Sweden. Compared to other energy system 
models, it needs a less significant learning curve and time effort to work, and, since it does 
not require any financial investment, OSeMOSYS is an accessible modelling tool for any 
researcher, student, or government specialist that needs to analyze an energy system 
(Howells et al., 2011). The reference version of OSeMOSYS, adopts the Linear Programming 
optimization technique and the related high-level mathematical programming language 
GNU Mathprog. Linear programming is a method to achieve the best outcome (such as 
maximum profit or lowest cost) in a mathematical model whose requirements are 
represented by linear relationships. Indeed, OSeMOSYS determines the optimal investment 
strategy and production mix of technologies and fuels required to satisfy an exogenous 
energy demand (Taliotis et al., 2016). The objective is to minimize an energy system’s net 
present value (NPV) costs to meet given demands for energy carriers, energy services, or 
other proxies over a predefined, multi-year, horizon. The energy system is represented by a 
set of technologies and energy carriers. Each technology either uses and/or produces an 
energy carrier. 
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The optimization problem is solved for every slice in which the year is split. The optimization 
horizon includes the years between 2015 and 2070 and it produces multiple output with an 
yearly time step, including the total capacity for each technology. 
 
OSeMOSYS -TEMBA is the implementation of OSeMOSYS for the African continent (The 
Electricity Model Base for Africa). It was first developed as a power system model (Taliotis et 
al., 2016) and then evolved into an energy system model. It is developed with the United 
Nations Economic Commission for Africa (UNECA) and the objective is to analyze the 
continental-scale African energy system. It covers the years between 2015 and 2070 and runs 
on a yearly basis, with a seasonal time step divided into night and daytime slices Each country 
is represented by a node, that includes the total demand of the nation and all the 
technologies that use or produce energy carriers. The objective of the model is to find the 
least cost arrangement of investment and operation system in the current situation and in 
the future. The nodes are connected through gas and electricity trade links, in order to satisfy 
the total final energy demand. Three different climate scenarios are assumed: no climate 
policy and constrained to 2.0 °C and 1.5°C warming constraining emissions to a consistent 
pathway. The Reference scenario, with no climate policy, projects the current situation into 
the future, where the energy policies do not evolve. Instead, in the two mitigation scenarios 
constrained to 1.5°C and 2.0°C there is the assumption that the African countries will need to 
reduce their electricity consumption by 11% and 27% respectively compared to the Reference 
scenario (Pappis et al., 2019). 
 
In this work we relied on previous projections of cost-optimal hydropower expansion in the 
African continent (Carlino et al., 2023). These projections combine the Shared Socio 
Economic Pathways (SSPs) and Representative Concentration Pathways to build three 
scenarios harmonizing climate change impacts on water availability, climate policy 
assumptions, land-use change, and socioeconomic projections. The scenarios we consider 
are the following: SSP1-2.6, SSP4-6.0 and SSP5-8.5. 
 

5.1.3 Methodology flowchart 

To assess the robustness and the reliability of the power capacity expansion derived from the 
energy system model we perform a downscaling in time using the power system model 
forced with input derived from the energy system model. To this aim, the two models, the 
data processing for the power system model input are combined (Figure 15). First, we used 
the results of several studies to obtain hourly generation profile and the installed capacity of 
the variable renewable resources, then we extracted some inputs and output, namely the 
long-term energy projections, from OSeMOSYS-TEMBA. Finally, PowNet simulates the 
power system in specific years of interest, and we use the outputs to examine how different 
capacity expansion plans lead to specific power deficits and transmission line overloads. 
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Figure 15: Flowchart of the modeling framework: both input and output of the energy system model are used, together with 
other datasets, to prepare input for the power system model; the power system model simulates the power system over specific 
years of interest. 
 
5.1.3.1 Nodes 

First, we defined the nodes in PowNet: for each country considered, one node contains the 
power demand and all the dispatchable units (coal, oil, gas, biomass, and nuclear) within that 
country. Additionally, we added one sub-node for each variable renewable resource to each 
country and a power deficit technology for each node n. The power deficit technology has a 
very high (ideally infinite) maximum capacity to allow the problem to find a feasible solution 
also when the total installed capacity is not enough to meet the demand. Yet, the variable 
cost of this technology is very high (ideally to represent the damage resulting from unmet 
demand) so the optimizer uses it as little as possible. After that, we determined the 
technologies that needed to be transferred from OSeMOSYS to PowNet. To do so, we chose 
the OSeMOSYS technologies from the "Power Plants" set and we grouped them into the 
following corresponding PowNet technology subsets: Biomass, Coal, Oil, Natural gas, 
Nuclear, Hydropower, Solar and Wind. Similarly, we considered the transmission lines of the 
OSeMOSYS model, i.e., the technologies belonging to the "Export electricity" set. 
Specifically, we used the ones connecting the countries of interest for the power system 
simulator.  
 
The solar and the wind groups, unlike the dispatchable unit groups, include technologies with 
different patterns of availability that need to take into account. For this reason, we initially 
added a sub-node for each type of technology belonging to the solar or wind group to 
characterize their availability patterns. Subsequently, to reduce the computational effort of 
the PowNet model, we grouped some of these technologies together. Specifically, we did not 
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group technologies that can store electricity together, to assess the availability of electricity 
for storage and its potential usage (Figure 16). 
 

 
Figure 16: On the left graphical representation of central and sub-nodes in PowNet with disaggregated sub-nodes, on the right 
graphical representation of central and sub-nodes in PowNet with aggregated sub-nodes 
 
5.1.3.2 Electricity demand 

The second challenge was translating the electricity demand. In OSeMOSYS the electricity 
demand is annual, and it had to be scaled to the hourly level for PowNet. We computed the 
hourly electricity demand for each country (Yh,n) by adopting a scaling factor for each hour 
and each country which partitions the values of annual electricity demand from OSeMOSYS, 
Zn. The scaling factor is simply obtained by dividing the hourly observed electricity demand, 
𝑋1h,n, by the annual observed electricity demand, �̅�n. This temporal downscaling of electricity 
demand can be described as follows:  
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Where n is the country node and h is the hourly time step considered. 
5.1.3.3 Total installed capacity: transmission lines 

The capacity of the transmission lines between nodes is obtained from the values of existing 
and new capacity, which are respectively an input and an output of the OSeMOSYS model. 
These values are summed for each transmission line (Eq. 2). It is important to underline that 
the residual capacity is a unique value for each year y, while the new capacity of a specific 
year is obtained by summing all the new capacities of the previous years until the considered 
year y.  
 
For example, let us consider the situation when OSeMOSYS-TEMBA model horizon starts in 
2015 for the availability of data in that year. If we have to find the total capacity of a 
transmission line for the year 2030, we need to sum the residual capacity of the year 2030, 
i.e., the existing capacity minus the retired capacity between 2015 and 2030, which is an input 
to the model. After that, the new capacities built from the year 2015 until 2030 need to be 
added to obtain the capacity existing in 2030 and to be used in PowNet to simulate the year 
2030.  
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Where Tt,y is the final capacity, while Rt,y and Nt,i are the residual and the new capacity for the 
transmission line t and the considered year y respectively. 
 
5.1.3.4 Total installed capacity: dispatchable units and renewable resources 

For dispatchable units and renewable generators excluding hydropower, we derive the future 
installed capacity by adding the capacity expansion optimized by the energy system model 
to the presently installed capacity. In our case, the year 2022 is our baseline and data is 
derived from available databases and projections reporting data at the country level 
(Stevanato et al., 2021). We consider the operation life of each power plant in order to 
account for the retired capacity between the year 2022 and the year for which we are 
interested in producing an hourly power system simulation. Then, we group the different 
power technologies according to the predefined technology groups to derive the total 
installed capacity for each group, for each country and year considered. 
 
Since PowNet requires a value for maximum and minimum capacity for each group of 
dispatchable units, we set the value of total capacity as the value of the maximum capacity 
(Eq. 3). We calculated the minimum capacity as a percentage of the maximum capacity (a), 
depending on the type of technology considered (Eq. 4).  
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Where C is the maximum capacity, c is the minimum capacity, g is the technology considered 
and a is a value between 0 and 1. 
 
5.1.3.5 Power generation of renewable resources 

The renewable resources, excluding hydro technology, include solar PV rooftop, solar PV 
utility, solar PV with storage, solar CSP with and without storage, onshore wind, and offshore 
wind.  We obtained hourly generation profile for these technologies from available datasets. 
To meet PowNet's requirement of aggregating power plants of the same category located 
within the same country into a single node, we assume that all sub-nodes are located in the 
geometric centre of their respective countries. Afterwards, to reduce the computational time 
of the PowNet’s simulations, as mentioned earlier, we aggregated the wind offshore and the 
wind onshore technologies into the "wind" sub-node, and the solar PV rooftop, the solar PV 
utility and the solar CSP without storage technologies into the "solar" sub-node (Figure 16). 
As a result, each country is represented by one central node containing dispatchable units, 
deficit and load, along with five sub-nodes: Wind, Solar, Solar PV with storage, Solar CSP with 
storage and Hydro. The renewable resources with storage are not combined with other 
technologies, allowing for the management of stored electricity when available. The power 
generation of the hydro power technology HG for each country n is instead obtained 
summing the generation from each hydro power plant located within the that country. The 
power generation is computed multiplying the installed capacity C and the monthly capacity 
factors MCF of each hydro power plant hp located in the considered countries (Eq. 5). 
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5.1.4 Case study  

5.1.4.1 Southern African Power Pool 

The Southern African Power Pool (SAPP) is a region that includes twelve countries, namely, 
Angola, Botswana, the Democratic Republic of the Congo, Lesotho, Malawi, Mozambique, 
Namibia, South Africa, Swaziland, Tanzania, Zambia, and Zimbabwe. At present, coal 
generation constitutes the majority share of the SAPP’s generation mix, accounting for 59%. 
In addition to coal (thermal), in SAPP other generation technologies are available, including 
hydropower, solar, distillate fuel oil, nuclear, wind, gas, biomass, and landfill or waste. The 
total installed generation capacity in the 12 countries is 80 923 MW with an operating capacity 
of 65 198 MW and a demand and reserve of 55 235 MW, and an excess generation capacity of 
9 963 MW (SAPP, 2021). Despite being the most developed regional power pool in the 
continent, Southern Africa’s electricity trade is heavily constrained by the limitations of the 
transmission network. At the same time, the population is expected to grow to more than 
500 million people in the next 25 years and, as a result, energy demand will increase 
dramatically (Spalding-Fecher et al., 2017). The SAPP region will therefore have to face two 
major challenges: meeting the increasing energy demand and limiting greenhouse gas 
emissions and their socio-environmental effects (Chowdhury et al., 2022). As SAPP moves 
towards cleaner sources of energy, there is a need to evaluate the reliability of the 
transitioning power system. Unmet demand and outages don’t have to be affected by the 
transition to clean energy. Better than that, these events should be come less frequent to 
improve economic development and living standards in the member countries. 
 
5.1.4.2 Data 

To assess the differences in electrical operations within the energy and power system models 
and examine the electricity generation deficit and transmission line overloads we combined 
data from four main datasets. First, we relied on previous projections of cost-optimal 
hydropower expansion in the African continent computed with OSeMOSYS-TEMBA (Carlino 
et al., 2023), to obtain data of residual capacity and new capacity for the technologies 
considered and the transmission lines. Second, we used available databases and projections 
reporting data at the country level of installed capacity in 2022 and hourly observed 
electricity demand (Stevanato et al., 2021). Third, we relied on the African Hydropower Atlas 
(Sterl et al., 2022), to obtain the power generation from each hydro power plant within the 
SAPP region. Fourth, we used available datasets (Pfenninger and Staffell, 2016) to obtain 
hourly generation profiles for wind and solar technologies. These datasets are combined in 
order to prepare the inputs required by PowNet, that is implemented in this work, at the 
SAPP level. The optimization horizon is of 1 year with an hourly time step. The twelve 
countries that comprises the SAPP region can transfer electricity between each other thanks 
to interconnections. PowNet represents the power system with a set of nodes, and they can 
exchange electricity using a power grid. A node can represent in a specific country the set of 
dispatchable units, the set of technologies that produce solar power, set of technologies that 
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produce solar PV with storage, set of technologies that produce solar CSP with storage, the 
set of technologies that produce hydropower, and the set of technologies that produce wind 
power.  From OSeMOSYS-TEMBA we choose the technologies that have to be transferred in 
PowNet, and they belong to the ”Power plants” sets. In each demand node, the power-
generating technologies are grouped into the following PowNet subsets: 
 

• Biomass: Biomass & Waste CHP plant with CCS - Air cooling, - MDT cooling, - NDT 
cooling, - OTF/OTS cooling, Biomass & Waste CHP plant - Air cooling, - MDT 
cooling, - NDT cooling, - OTF/OTS cooling. 

• Coal: Coal power plant with CCS - Air cooling, - MDT cooling, - NDT cooling, - 
OTF/OTS cooling, Coal power plant - Air cooling, - MDT cooling, - NDT cooling, - 
OTF/OTS cooling. 

• Oil: Oil-fired gas turbine (SCGT) - Air cooling (old), - MDT cooling (old), - NDT 
cooling (old), - OTF/OTS cooling (old), Oil-fired gas turbine (SCGT) - Air cooling 
(new), - MDT cooling (new), - NDT cooling (new), - OTF/OTS cooling (new), Light 
Fuel Oil stand-alone (1kW), Light Fuel Oil power plant - Air cooling (old), - MDT 
cooling (old), - NDT cooling (old), - OTF/OTS cooling (old), Light Fuel Oil power plant 
- Air cooling (new), - MDT cooling (new), - NDT cooling (new), - OTF/OTS cooling 
(new). 

• Natural gas: Natural gas power plant (combined cycle) - CCS - Air cooling (new), - 
MDT cooling (new), - NDT cooling (new), - OTF/OTS cooling (new), Natural gas 
power plant (combined cycle) - Air cooling (old), - MDT cooling (old), - NDT cooling 
(old), - OTF/OTS cooling (old), Natural gas power plant (single cycle) - CCS - Air 
cooling (new), - MDT cooling (new), - NDT cooling (new), - OTF/OTS cooling (new), 
Natural gas power plant (single cycle) - Air cooling (old), - MDT cooling (old), - NDT 
cooling (old), - OTF/OTS cooling (old). 

• Nuclear: Nuclear power plant - OTS/OTF cooling (old), Nuclear power plant - 
OTS/OTF cooling (new) 

• Hydropower: hydropower plants within SAPP.  
• Solar: CSP (without storage), solar PV (utility), solar PV (rooftop). 
• Solar PV with storage: solar PV with storage 
• Solar CSP with storage: CSP (with storage) 
• Wind: wind (onshore), wind (offshore). 

 
where CHP stays for Combined Heat and Power, CCS for Carbon Capture and Storage, SCGT 
for Simple Cycle Gas turbine, and CSP for Concentrating Solar Power. Addition- ally, the 
following cooling technologies are reported with acronyms: MDT for Mechanical Draft 
Tower, NDT for Natural Draft Tower, OTF for Once Through Freshwater, and OTS for Once 
Through Salt water. 
 
The PowNet’s inputs that are not taken from OSeMOSYS-TEMBA, are the following ones: 

• TransLoss, that is the parameter used to discount the energy production by a given 
percentage, and in our case is equal 0.075 (Chowdhury et al., 2020). 
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• N1criterion, that is a parameter that leaves the part of the transmission lines’ 
capacity unused, allowing for any hypothetical reactive power flows, and in our case 
is equal to 0.85 

• ResMargin, that is the percentage of the system’s demand used in the electricity 
reserve constraint, and in our case is equal to 0.15 (Chowdhury et al., 2020). 

• SpinMargin, that is the percentage of the total reserve, used in the electricity reserve 
constraint, and in our case is equal to 0.5 (Chowdhury et al., 2020). 

• Fixed O&M costs, variable O&M costs for each type of technology (Tidball et al., 
2010). 

• Fuels price (IEA-ETSAP, 2010). 
• Start-up costs, ramp, minup time mindown time, heat rate of each technology and 

fuel price (Chowdhury et al., 2020, (Hörsch et al., 2018) 
• DerateF used to account for the impact of droughts on freshwater- dependent 

dispatchable units, and in our case is assumed ideal, which means equal to 1. This 
reflects the assumptions that cooling system are always able to work and power 
plant efficiency is not affected at any time step by water scarcity. 

• The values of the parameter a, which is used to compute the minimum capacity of 
the dispatchable units ((“Innovation landscape brief: Flexibility in conventional 
power plants,” n.d.).  

 

5.2 Numerical Results 
Three main simulations are conducted in year 2030, using a combination of the Shared 
Socioeconomic Pathways (SSPs) and Representative Concentration Pathways, namely SSP1-
2.6, SSP4-6.0, and SSP5-8.5. SSP1-2.6 scenario aims to maintain the global mean 
temperature below 2°C, while SSP4-6.0 and SSP5-8.5 scenarios are characterized by higher 
levels of warming and by rising inequalities and fossil-fueled development, respectively. 
 

5.2.1 Power generation mix, deficit and violation of the transmission lines 
analysis 

In all the simulations computed with PowNet, the percentage of power generation 
particularly from coal, but also from gas, nuclear and solar in the annual generation mix 
increases compared to OSeMOSYS-TEMBA. This difference is compensated by the 
decreased use of wind and hydro power. This trend can be attributed to the significant 
concentration in PowNet of hydropower generation available within the Democratic Republic 
of Congo. However, the existing transmission lines do not possess sufficient capacity to 
facilitate the transfer of the entire available hydropower generation, resulting in a decrease 
in hydro generation for these scenarios.  
 
In addition, all three simulations show a percentage of deficit, indicating that the power 
generated is insufficient to meet the demand. In the last two scenarios, the percentage of 
deficit increases compared to the reference scenario mainly as a result of reduced coal use 
and insufficient power generation. The peak of the mean hourly probability of power 
generation deficit is located between 7 and 9 pm, therefore in the evening and the countries 
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with the highest deficit are Zambia and Tanzania in all three simulations, but it is also 
noticeable in Angola and in the SSP1-2.6 scenario in Malawi (Figure 17). 
The peak of the mean hourly probability of violation of the transmission lines is also located 
during the evening. The transmission lines with a percentage of violation higher than 75% are 
mainly the ones connecting the Democratic Republic of Congo with Zambia and Angola 
(Figure 18). This situation can be attributed to the abundant hydroelectric power generation 
capacity in the Democratic Republic of Congo, primarily attributable to the presence of the 
Inga 3 hydropower plant, boasting a remarkable capacity of 11050 MW. Nonetheless, there 
are other transmission lines with a percentage of violation higher than 40% connecting other 
countries experiencing power generation deficit. 
 

 
Figure 17: Mean hourly probability of deficit. 
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Figure 18: Analysis of the transmission lines. The maps report the transmission lines with an annual percentage of violation 
higher than 0, while the plots report the mean hourly probability of violation of the transmission lines. 
 

5.2.2 Peak power demand analysis 

To understand the causes behind the occurrence of the power generation deficit, we focused 
on the hour of maximum power demand, which is 9 pm on October 30th, 2030 for the 
scenarios SSP1-2.6 and SSP4-6.0 and 9 pm on October 31st, 2030 for the scenario SPP5-8.5. 
The bars in Figure 19 represent the average power output of OSeMOSYS-TEMBA, which is 
the annual generation mix divided by the number of hours in a year (8760), and the power 
output of PowNet in the hour of peak power demand. The power generation during this hour 
is unable to meet the demand, resulting in a deficit in the PowNet peak power output bar. In 
all the scenarios, OSeMOSYS-TEMBA is planning the capacity expansion based on average 
power demand, resulting in insufficient available capacity to meet the peak demand 
observed at the hourly resolution in PowNet.  
 
The deficit in the hour of peak demand arises in all the scenarios from the lack of installed 
capacity in the countries where the deficit occurs and from the fact that transmission lines 
connecting these countries with others are already used at maximum capacity (Figure 20 , 
Figure 21, and Figure 22). In the SSP1-2.6 and SSP4-6.0 scenarios (Figure 20 and Figure 21) 
the deficit is particularly high in Malawi, Zambia and Tanzania, but also in Namibia and 
Angola, and it cannot be reduced with the existing transmission lines, which are almost fully 
saturated. Increasing the installed capacity is necessary to reduce the deficit. However, 
increasing the capacity of transmission lines between Zambia, Angola and Democratic 
Republic of Congo could reduce the shortfall. In the SSP5-8.5 scenario (Figure 9) the deficit is 
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mostly concentrated in Tanzania and Namibia, where the total installed capacity must 
increase to meet their electricity demand. 
 

 
 
Figure 19: Peak power demand analysis. OSeMOSYS-TEMBA’s average generation mix and PowNet's generation mix in the 
hour of peak power demand. 

 

 
Figure 20: Power flow analysis during the hour of peak demand with scenario SSP1-2.6 
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Figure 21: Power flow analysis during the hour of peak demand with scenario SSP4-6.0 
 

 
Figure 22: Power flow analysis during the hour of peak demand with scenario SSP5-8.5. 

 
5.2.3 Hydropower potential 

In the Democratic Republic of the Congo and, to some extent, in Angola, the hydropower 
generation that is actually integrated into the grid is significantly lower in all the scenarios 
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when compared to the total hydropower generation available (Figure 23). To potentially 
reduce the power deficit, a feasible solution would be to store unused water for future power 
generation within the available reservoirs. This stored water could then be exploited during 
periods of high demand. The Democratic Republic of Congo has the capacity to store a 
substantial volume of water, approximately 2985.465 million cubic meters without 
considering the dead volume, which translates to a potential hydropower generation of 
534.6208 GWh. Meanwhile, Angola has the capability to store around 8319.864 million cubic 
meters of water, corresponding to a hydropower generation potential of 2449.05 GWh. 
However, in order to exploit this hydropower potential, additional capacity needs to be 
installed for all the scenarios in the transmission lines between the Democratic Republic of 
Congo and Zambia, as well as between the Democratic Republic of Congo and Angola, as 
they are already operating near their maximum capacity.  The power deficit, as stated before, 
has peak during the evening, around 7 pm. Furthermore, the power deficit is more 
pronounced during the months from July to October when the available hydropower 
generation is at its lowest.  However, by storing unused water primarily in the Democratic 
Republic of Congo and secondarily in Angola, it is possible to mitigate this deficit. 

 
Figure 23: Hydropower potential and power deficit. 
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6 Including local crop production functions in 
large-scale agricultural models 

The reasons why this feedback loop is relevant have been acknowledged and stated in 
CAPRI’s development to better account for food-water linkages (Blanco et al., 2018). One of 
the main improvements indicated was the improvement on water availability and abstraction 
modelling. This improvement has been addressed in GoNEXUS through an interconnection 
between CAPRI and PCR-GLOBWB2 at the global level and between CAPRI and LISFLOOD 
at the EU level (more details inD3.2). The feedback loop previously described on improving 
operating rules could also result into an improvement on CAPRI. The implementation of a 
feedback loop between a local hydrological or water resource management model and CAPRI 
would be solved the same way as the linkage between CAPRI and PCR-GLOBWB2/LISFLOOD 
described in D3.2. 
 
The inclusion of local crop production functions in CAPRI would enable a more precise 
assessment of irrigation needs and the impact of irrigation deficits on crop productions, 
which depend on the local soil and irrigation practices. The methodology proposed, 
combining FAO56 (Allen et al, 1998) and FAO66 (Steduto et al., 2012), would also address in 
an efficient manner the intra-annual climatic patterns, as well as how they interact with the 
local irrigation practices, by adopting a daily scale in its building. The implementation of such 
a feedback loop directly into CAPRI formulation would be infeasible due to the associated 
computational burden, as acknowledged in Blanco et al (2018), but the off-line calculation of 
production functions would enable their efficient and sequentially uptake. This feedback loop 
is presented in a theoretical way in order to describe how these curves would be derived. 
 

6.1 Methodology 
The methodology followed for the elicitation of production curves can be divided into the 
main type of crop considered: fruit trees and annual crops.  
 

6.1.1 Production curves for fruit trees 

The calculation of the production curves for fruit trees follows, on a broader view, the FAO 
Irrigation and Drainage Paper 33 (Doorenbos et al., 1979) and the FAO Irrigation and Drainage 
Paper 66 (Steduto et al., 2012). These reports establish a relationship between crop 
evapotranspiration and crop yield, which can be directly translated into scarcity costs by 
multiplying it by the crop price. This approach is the one already considered by CAPRI in 
rainfed and irrigated agriculture (Blanco et al, 2018). 
 
However, in this feedback loop crop evapotranspirations (ETc) for the fruit trees present in 
the Jucar river basin were calculated applying a soil balance at the daily scale including the 
current irrigation practices. 
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Figure 24: Flowchart used to compute crop productions 

 
For each fruit tree, the procedure described in the FAO Irrigation and drainage paper 56 (FAO 
56, Allen et al, 1998) was followed, calculating the reference evapotranspiration ET0 and then 
applying the corresponding crop coefficient Kc to transform ET0 into ETc. ETc values for each 
year and fruit tree were computed based on the climatological data provided by the CMIP6 
scenarios considered in GoNEXUS (see deliverables D2.1 and D2.2), the soil features and the 
crop yield coefficient (ky) and reference production or yield. Reference productions for the 
fruit trees of the Jucar river basin were obtained the annual statistics published by the 
Ministry for Agriculture, Fishery and Food of Spain or from the Survey on Crop Surface and 
Production of Spain (ESYRCE). To derive each production function, a set of total irrigation 
levels were used as input and downscaled into daily irrigation levels (I). Then, the daily water 
balance and daily ET (E+Tr) values were computed and aggregated at the annual scale (next 
equation and Figure 25). The adoption of the daily scale is crucial in this regard to account for 
the soil water balance and water uptake from crops, as well as to account for the features of 
the irrigation practices used in the area. 
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Figure 25: Soil water stocks and flows considered by FAO56 (FAO, 2023) 

 
6.1.2 Production curves for cereals 

Crop production and water needs for cereals have been calculated using the AquaCrop-OSPy 
tool (https://pypi.org/project/aquacrop/), which fits in an adequate way the features of annual 
crops. AquaCrop-OSPy follows FAO 56, FAO33 and FAO 66 processes, as well as for the case 
of fruit crops. The only difference refers to the yield calculations, which in Aquacrop are 
expressed in terms of biomass (B) and harvest index (HI), in which yield is defined as the 
product between them. Figure 26 summarizes the stocks and fluxes considered by Aquacrop. 

https://pypi.org/project/aquacrop/
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Figure 26: Stocks and fluxes considered by Aquacrop-OSPy (FAO, 2023) 

 

6.2 Numerical Results 
The results obtained are production functions per type of crop and year, tailored to the 
particular features of climate (at the daily scale) and soil of the Jucar river basin. Those 
express the relationship between water applied and crop yield per year. Some of them are 
shown as example below. 
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7 Synthesis and conclusions 
This document synthesizes the main findings of Task T4.6 (Feedbacks to the Global Scale), 
focusing on the disparities between global and local Water-Energy-Food-Ecosystem models. 
The analysis covers various feedback mechanisms involving selected GONEXUS case studies 
across different spatial scales. 
  
Chapter 2 demonstrates that the FRB system developed for the Jucar river system performs 
well with a simple experimental setup, reinforcing the potential of fuzzy logic for deriving 
effective operating rules for complex multi-reservoir systems in global hydrologic models. 
  
Chapter 3 reveals that water availability significantly limits hydropower generation, with 64% 
of modeled plants showing an average capacity factor in normal conditions below the 
nominal value used in continental energy systems models OsEMOSYS-TEMBA. The capacity 
factors are also sensitive to intra-annual, inter-annual, and climate change induced 
hydrologic variability, highlighting the strong limitations of assuming a homogeneous 
capacity factor. 
  
Chapter 4 investigates the potential impacts of national socio-political instability on energy 
transition strategies in Africa as simulated by the continental energy systems models 
OsEMOSYS-TEMBA. The analysis identifies key risk hotspots and factors influencing energy 
security under various future scenarios. Despite some limitations, such as the posterior 
quantification of political risk and the constrained scenario assumptions, the study 
underscores the importance of incorporating socio-political considerations into energy 
system planning to ensure robust and adaptable transition strategies. 
  
Chapter 5 shows how refining power system models to higher spatial and temporal 
resolutions can reveal potential vulnerabilities in long-term, continental scale energy 
planning projections. The integration of renewable resources requires high-frequency power 
operation adjustments, and existing infrastructure may not fully meet future demand. The 
study highlights the need for additional power generation capacity and expanded 
transmission infrastructure, particularly in regions like Zambia, to mitigate power shortages 
and enhance system reliability. 
 
Chapter 6 describes a methodology to enhance the CAPRI agricultural model by integrating 
local crop production functions. This involves creating production curves that depict the 
relationship between water applied (irrigation) and crop yield, considering local soil and 
irrigation practices. The methodology differs for fruit trees and annual crops (e.g., cereals, 
vegetables). For fruit trees, crop evapotranspiration (ETc) is calculated using a daily soil 
balance, factoring in existing irrigation methods, and then linked to crop yield based on FAO 
guidelines. For annual crops, the AquaCrop-OSPy tool is utilized, which models water flow 
and crop growth to estimate yield. The resulting production functions, specific to each crop 
type and year, are intended to enable a more precise evaluation of irrigation needs and the 
impact of water scarcity within the CAPRI model. 
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In summary, these findings emphasize the complex interplay between global policies and 
local multisector dynamics. It demonstrates that global WEFE policies can have significant 
local ramifications and stresses the necessity of tailoring global policies to local contexts. By 
identifying risk hotspots and potential gaps across models, this report provides valuable 
insights for producing better WEFE evidence navigating the trade-off between targeting 
realism at the local scale and representing global socio-economic and climatic 
teleconnections. 
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